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A B S T R A C T

Autonomous robotic agents have begun to impact many aspects of our society,
with application in automated logistics, autonomous hospital porters, manufac-
turing and household assistants. The objective of this thesis is to explore Deep
Reinforcement Learning approaches to planning and navigation in large and
unknown 3D environments. In particular, we focus on tasks that require explo-
ration and memory in simulated environments. An additional requirement is
that learned policies should generalize to unseen map instances. Our long-term
objective is the transfer of a learned policy to a real-world robotic system. Rein-
forcement learning algorithms learn by interaction. By acting with the objective
of accumulating a task-based reward, an Embodied AI agent must learn to dis-
cover relevant semantic cues such as object recognition and obstacle avoidance, if
these skills are pertinent to the task at hand.

This thesis introduces the field of Structured Deep Reinforcement Learning
and then describes 5 contributions that were published during the PhD. We start
by creating a set of challenging memory-based tasks whose performance is bench-
marked with an unstructured memory-based agent. We then demonstrate how
the incorporation of structure in the form of a learned metric map, differentiable
inverse projective geometry and self-attention mechanisms; augments the unstruc-
tured agent, improving its performance and allowing us to interpret the agent’s
reasoning process.

We then move from complex tasks in visually simple environments, to more
challenging environments with photo-realistic observations, extracted from scans
of real-world buildings. In this work we demonstrate that augmenting such an
agent with a topological map can improve its navigation performance. We achieve
this by learning a neural approximation of a classical path planning algorithm,
which can be utilized on graphs with uncertain connectivity.

From work undertaken over the course of a 4-month internship at the research
and development department of Ubisoft, we demonstrate that structured meth-
ods can also be used for navigation and planning in challenging video game
environments. Where we couple a lower level neural policy with a classical plan-
ning algorithm to improve long-distance planning and navigation performance
in vast environments of 1km×1km. We release an open-source version of the
environment as a benchmark for navigation in large-scale environments.

iii
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iv abstract

Finally, we develop an open-source Deep Reinforcement Learning interface for
the Godot Game Engine. Allowing for the construction of complex virtual worlds
and the learning of agent behaviors with a suite of state-of-the-art algorithms. We
release the tool with a permissive open-source (MIT) license, to aid researchers in
their pursuit of complex embodied AI agents.
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R É S U M É

Les robots autonomes ont commencé à impacter de nombreux aspects de notre
société avec, par exemple des applications dans la logistique automatisée, les
robots hospitaliers autonomes, l’industrie ou encore les aides ménagères. L’objec-
tif de cette thèse est d’explorer les approches d’apprentissage par renforcement
profond pour la planification et la navigation dans des environnements 3D vastes
et inconnus. Nous nous concentrons en particulier sur les tâches qui nécessitent
d’explorer et mémoriser les environnements simulés. Une contrainte supplémen-
taire est que les stratégies apprises doivent se généraliser à des cartes inconnues.
Notre objectif à long terme est le transfert d’une technique d’apprentissage vers
un système robotique dans le monde réel. Les algorithmes d’apprentissage par
renforcement apprennent des interactions. En agissant avec l’objectif d’accumu-
ler des récompenses liées à une tâche, une IA incarnée doit apprendre à découvrir
des informations sémantiques telles que la reconnaissance d’objets et l’évitement
d’obstacles, si ces compétences sont pertinentes pour l’accomplissement de la
tâche.

Cette thèse introduit le domaine de l’Apprentissage par Renforcement Pro-
fond Structuré (Structured Deep Reinforcement Learning) et décrit ensuite cinq
contributions qui ont été publiées au cours de la thèse. Nous commençons par
créer un ensemble de tâches complexes nécessitant de la mémoire pour comparer
les performances avec un agent à la mémoire non structurée. Nous démontrons
ensuite comment l’incorporation d’une structure telle qu’une carte métrique
apprise, une géométrie projective inverse différentiable et des mécanismes d’auto-
attention améliorent les performances de l’agent, ce qui nous permet d’analyser
son processus de raisonnement.

Nous passons ensuite d’environnements visuellement simples à des environ-
nements plus difficiles avec des observations photoréalistes extraites de scans de
bâtiments du monde réel. Dans ce travail, nous démontrons qu’améliorer un agent
avec une carte topologique peut améliorer ses performances de navigation. Nous
y parvenons en lui apprenant une approximation neuronale d’un algorithme de
planification de chemin classique, qui peut être utilisé sur des graphes avec une
connectivité incertaine.

Ensuite, à partir des travaux menés lors d’un stage de quatre mois au sein
du département recherche et développement d’Ubisoft, nous démontrons que
les méthodes structurées peuvent également être utilisées pour la navigation et
la planification dans des environnements de jeux vidéo complexes. Nous combi-

v
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vi résumé

nons une politique neuronale de bas niveau avec un algorithme de planification
classique pour améliorer la planification à longue distance et les performances
de navigation dans de vastes environnements de 1km×1km. Nous publions une
version open source de l’environnement comme référence pour la navigation dans
des environnements à grande échelle.

Pour finir, nous développons une interface open source Deep Reinforcement
Learning pour le Godot Game Engine. Elle permet la construction de mondes
virtuels complexes et l’apprentissage de comportements agents avec une suite
d’algorithmes de pointe. Nous publions l’outil avec une licence permissive open
source (MIT) pour aider la recherche sur l’IA des agents incarnés complexes.
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I N T R O D U C T I O N

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Context

We are influenced by automated decision-making in almost every aspect of our
lives. From the classical planning algorithms used in satellite navigation systems
to the complex decision-making algorithms that recommend which advert to
display next. As society becomes more reliant on technology and humanity
extends its lifespan thanks to medical advancements, we will require physical
assistance to be comfortable and safer in our daily lives. Automated systems
have started to replace low-skilled jobs sectors such as supermarket checkouts,
car manufacturing and warehouse logistics. These applications exist in highly
controlled environments, perform one specific task very well and require years of
handcrafted design by teams of engineers. The next steps in robotics will require
more general systems that can adapt to new scenarios and environments. These
physical AI systems will be required in order to provide home carers for an aging
population, nursing assistants in hospitals and automated delivery of products.

As robotic systems are allowed to perform more general tasks they will be
required to learn from their inevitable mistakes. Learning-based systems exist
already that impact our daily lives, for example in automated translation systems,
photo categorization and movie recommendation in our favorite streaming plat-
forms. The systems are considered to be “narrow” AI, which perform a specific
task extremely well. But they are not considered to be Embodied AI, where an
AI agent interacts with a physical environment and performs sequential decision
making, where our actions influence the state of our environment. The creation
of Embodied AI systems poses many challenges, in particular safety guarantees,

1

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI038/these.pdf 
© [E. Beeching], [2022], INSA Lyon, tous droits réservés



2 introduction

Figure 1.1: The progression of visual representations in Embodied AI simula-
tors. Recent years have shown a rapid improvement in the quality of
simulated environments and the observations rendered by a simulated
monocular camera. Figures from (Kempka et al. 2017; Beattie et al.
2016a; Savva et al. 2019a)

availability of hardware and the time it takes to iterate on new ideas and algo-
rithms. For this reason, researchers work predominantly in simulation. In the
last five years there has been a proliferation of Embodied AI simulators, ranging
from video-game-like environments (Kempka et al. 2017; Beattie et al. 2016a) to
photo-realistic environments (Savva et al. 2019a) based on real-world 3D scans,
see Figure 1.1. While photo-realism is of great importance when evaluating a
vision-based agent that will one day be transferred into the real world, we must
also focus on the difficulty of the tasks we propose to the Embodied AI system.
Tasks in this field range from more simple GPS-guided point-to-point navigation,
to challenging tasks that require memorization of key objects and localization
under noisy motor actuation. Traditional approaches in robotics typically solve
these problems by building a map of the environment and then performing local-
ization, planning and navigation. Classical methods, however, do not allow for
aspects of navigation the humans perform innately, we recognize similarities in
the layout, identify free space and semantic classes in our environment to guide
our decision-making process. We have learned general concepts such as that in
a house, bedrooms are typically upstairs and kitchens downstairs. We can then
exploit these regularities when navigating in a new environment.

Learning-based methods aim to exploit such structural and semantic regular-
ities using end-to-end approaches, which typically take as input pixels from a
monocular camera and directly output low-level actions such as rotating and
movement in a particular direction.

These works build on recent advancements in Computer Vision (CV) and Su-
pervised Learning. In particular, the application of Convolutional Neural Net-
work (CNN) to perform non-linear feature extraction from images. Since the
creation of AlexNet (Krizhevsky et al. 2012), there has been a massive advance-
ment in the field of computer vision, which has influenced many other domains.
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1.2 motivation 3

The recent advances in Deep Learning come from three main sources: the
availability of large-scale annotated datasets to perform training, the action of
performing batched stochastic gradient-based optimization of the Neural Net-
work parameters. The availability of computing resources and the utilization of
Graphics Processing Unit (GPU) for fast matrix multiplication, the fundamental
operation used in Neural Networks. The availability of high quality open-source
Deep Learning libraries such as TensorFlow (Abadi et al. 2015), PyTorch (Paszke et
al. 2019), Jax (Bradbury et al. 2018) and MXNet (Chen et al. 2015). This trifecta has
enabled a decade of enormous progress in the field of Artificial Intelligence. A fur-
ther factor that has influenced advances in Deep Learning and Embodied Artificial
Intelligence (AI) are network architectures that can learn to integrate sequences
of data, with the most well-known being the Long-Short Term Memory (LSTM)
module (Hochreiter et al. 1997a). Humans appear to focus their attention on par-
ticular objects of interest when analyzing a scene, group of objects or text. Recent
successes in Natural Language Processing (NLP) are loosely inspired by principle
of attention with leaps in performance being achieved in the field with the trans-
former network architecture (Vaswani et al. 2017a). Deep Neural Networks have
drastically changed the fields of supervised and unsupervised learning and they
have led to great advancements in the domain of Deep Reinforcement Learning.
With one of the most cited publication being that of Deep Q-Learning (Mnih et al.
2015a), where a CNN is trained to play 57 Atari games, some at a superhuman
level. The history of game-playing with neural networks is started my earlier, with
the first instance of neural networks learning to plan games was TD-Gammon
(Tesauro et al. 1995), which played backgammon. We leave further discussion to
related works chapter.

1.2 Motivation

Successes in challenging video games have encouraged research in Reinforcement
Learning (RL) and supervised learning for robotic applications. An early study
using end-to-end learning for robotic control was published in 2016 (Levine
et al. 2016a) who learned policies for grasping actions for a robotic arm. In
2016 (Zhu et al. 2017) published a work that performs end-to-end target-driven
navigation, where the policy is learned, in simulation, to navigate to a target
image location. A further work published in 2016 (Mirowski et al. 2016) learns
an end-to-end policy in simulated 3D environments, with the end focus is on
machine intelligence, rather than potential transfer to a real-world setting. The
three aforementioned works, shown in Figure 1.2, provide the cornerstones, to an
influx of learning-based approaches to navigation over the last five years, which
are discussed in detail in chapter 2. While some of the strengths of learning-based
approaches have been mentioned, it is pertinent to highlight the downsides. Deep
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4 introduction

Figure 1.2: Three pivotal works in the field of Deep Reinforcement Learning
for robotic control Recent years have shown a rapid improvement in
the quality of simulated environments and the observations rendered
by a simulated monocular camera. Figure from (Levine et al. 2016a;
Zhu et al. 2017; Mirowski et al. 2016)

RL approaches are notoriously sample inefficient (Henderson et al. 2017), requiring
tens to hundreds of millions of environment interactions in order to learn an
effective policy. While this is an active area of research, the solution to date is
massive scale and parallelization (Wijmans et al. 2019a; OpenAI 2018; Vinyals
et al. 2019). A further challenge is a sensitivity to hyper-parameter configurations.
In addition, end-to-end approaches typically treat the neural network model as a
black box, so it can be difficult to interpret the reasoning behavior of a learning
end-to-end policy.

In order to trust a system, we would like to understand how it works, why it
makes the choices it makes, ideally the logical steps it follows to make a decision
are similar to the steps we would take. Handcrafted solutions to planning and
navigation can be decomposed into their individual parts in order to diagnose
where there are deficiencies in the system. End-to-end learning-based approaches
may outperform their handcrafted counterparts but lack interpretability.

This thesis aims to find a compromise between unstructured end-to-end learning
approaches and handcrafted solutions. The compromise we aim to find leans more
towards learning-based approaches, where typically we take a learning-based
approach and add structure rather than adding learning to a handcrafted method.
We believe that by imbuing our network architecture with additional structure
and priors related to vision, planning and navigation, we will not only realize a
more interpretable agent, but we will also increase both its performance and the
sample efficiency. It would seem utopic to expect to achieve these benefits without
a cost. In this instance, the cost comes in terms of the design and implementation
of the structured learning system, which by definition is applicable to a narrower
set of problems than its unstructured counterparts.
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1.2 motivation 5

Structured network architectures have the potential to improve performance in a
number of problem settings. For an example, consider a robotic agent deployed in
a home, assigned with the task of finding a misplaced set of keys. If this is the first
time the agent is in this environment, it must perform an exhaustive exploratory
strategy that visits each room, performing object recognition in search of the set of
keys. If however, the agent is already familiar with the environment, is can analyze
its internal memory to try to identify if it has observed the keys and where they
are located. In the case of a typical unstructured end-to-end Deep RL approach,
the agent’s internal memory is a vector and the agent must learn to interpret
this unstructured information. If the agent is built with structured memory, the
agent could potentially query for the object’s location and use a structured neural
approximation of a path planning algorithm to identify the sequence of way-
points required to navigate to the location of the set of keys. By structuring the
agents internal representation of the environment, we enable it to perform spatial
reasoning about its environment and improve its understanding of the world it
inhabits. In addition to improved performance, structured representations often
provide interpretable information, that can inform external users about the agent’s
reasoning process.

Three key works in the domain have provided the foundation and inspiration
to many of the models developed during this PhD.

Cognitive Mapping and Planning for Visual Navigation (Gupta et al. 2017a) was
the first spatially structured neural network approach for robotic control. The
authors created a Deep Neural Network architecture that contains a learned belief
state, that is translated and rotated from one timestep to the next depending on
ego-motion of the agent. An overview of the architecture is shown in Figure 1.3,
the structured hidden state is passed from one timestep to the next, allowing the
agent to perform spatial reason and planning. In this work, the policy was learned
with a technique called imitation learning, where we are provided with sequences
of observations and action labels, created by a (human) expert to supervise the
training process. In this work the ego-motions of the agent are restricted to
90-degree rotations, which is one of the limitations we addressed in our EgoMap
model.

The authors of Neural map: Structured memory for deep reinforcement learning
(Parisotto et al. 2017a), develop a model with a spatially structured neural memory
that is learned end-to-end with Deep reinforcement Learning, the memory is read
with self-attention and global read operations with a CNN. A potential downside
to this approach, that we address in EgoMap, is what the agent sees is mapped to
where the agent is located, not to where the features from the observations are
located in the environment.

In Semi-parametric topological memory for navigation (Savinov et al. 2018a), the
authors build a graph-based representation by predicted connectivity between
observations and thresholding the predictions to build a graph. They then use
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Figure 2: Architecture of the mapper: The mapper module processes first person images from the robot and integrates the observations into a latent

memory, which corresponds to an egocentric map of the top-view of the environment. The mapping operation is not supervised explicitly – the mapper is

free to write into memory whatever information is most useful for the planner. In addition to filling in obstacles, the mapper also stores confidence values in

the map, which allows it to make probabilistic predictions about unobserved parts of the map by exploiting learned patterns.

they have not been trained on.

In context of navigation, learning and DRL has been

used to obtain policies [4,12,13,21,35,50,56,59,64]. Some

of these works [21, 35], focus on the problem of learning

controllers for effectively maneuvering around obstacles di-

rectly from raw sensor data. Others, such as [9, 50, 56],

focus on the planning problem associated with navigation

under full state information [56], designing strategies for

faster learning via episodic control [9], or incorporate mem-

ory into DRL algorithms to ease generalization to new en-

vironments. Most of this research (except [64]) focuses on

navigation in synthetic mazes which have little structure to

them. Given these environments are randomly generated,

the policy learns a random exploration strategy, but has no

statistical regularities in the layout that it can exploit. We in-

stead test on layouts obtained from real buildings, and show

that our architecture consistently outperforms feed forward

and LSTM models used in prior work.

The research most directly relevant to our work is the

contemporary work of Zhu et al. [64]. Similar to us, Zhu

et al. also study first-person view navigation using macro-

actions in more realistic environments instead of synthetic

mazes. Zhu et al. propose a feed forward model which when

trained in one environment can be finetuned in another en-

vironment. Such a memory-less agent cannot map, plan or

explore the environment, which our expressive model nat-

urally does. Zhu et al. also don’t consider zero-shot gener-

alization to previously unseen environments, and focus on

smaller worlds where memorization of landmarks is feasi-

ble. In contrast, we explicitly handle generalization to new,

never before seen interiors, and show that our model gener-

alizes successfully to floor plans not seen during training.

Relationship to Contemporary Work. Since conduct-

ing this research, numerous other works that study visual

navigation have come out. Most notable among these is

the work from Sadeghi and Levine [53] that shows that

simulated mobility policies can transfer to the real world.

Mirowski et al. [46] study sources of auxiliary supervi-

sion for faster training with RL. Bhatti et al. [8] incorpo-

rate SLAM based maps for improving the performance at

playing Doom. Brahmbhatt and Hays [10] study naviga-

tion in cities using feed-forward models. Zhang et al. [62]

and Duan et al. [16] show how to speed up learning for re-

lated tasks. [8, 16, 46] show results in synthetic mazes, and

only [10, 53, 62] show results with real images. While all

these works study visual navigation, none of them leverage

mapping and planning modules or propose end-to-end ar-

chitectures for jointly mapping and planning which is the

focus of our work.

3. Problem Setup

To be able to focus on the high-level mapping and plan-

ning problem we remove confounding factors arising from

low-level control by conducting our experiments in simu-

lated real world indoor environments. Studying the prob-

lem in simulation makes it easier to run exhaustive evalu-

ation experiments, while the use of scanned real world en-

vironments allows us to retains the richness and complex-

ity of real scenes. We also only study the static version of

the problem, though extensions to dynamic environments

would be interesting to explore in future work.

We model the robot as a cylinder of a fixed radius and

height, equipped with vision sensors (RGB cameras or

depth cameras) mounted at a fixed height and oriented at

2618

Figure 1.3: Cognitive mapping and planning Deep Neural network architecture
from Cognitive mapping and planning. Figure from (Gupta et al.
2017a)

classical planning techniques to estimate paths to a target location, indicated
by an image. In our Learning to Plan work we address two limitations of their
work, planning under uncertainty by using the raw connectivity predictions and
observations as input to a graph neural network and generalization to environment
instances that were not observed during training.

The objective of this thesis was to explore Structured Deep Reinforcement
Learning approaches to planning an navigation and by doing do, answer the
following questions:

• Can Structured approaches improve the generalization performance of the
agent when evaluated in unseen environment instances?

• Will sample efficiency be increased when learning a structured policy, when
compared to an unstructured agent?

• Are we able to interpret the agent’s reasoning process by visualizing its
structured representations?

1.3 Contributions

This work was funded by “Institut national de recherche en sciences et technolo-
gies du numérique” (INRIA) Cordi-S grant. This work also participated scientifi-
cally to ANR projects: ANR Deepvision (ANR-15-CE23-0029, STPGP479356-15), a
joint French/Canadian call by ANR & NSERC and ANR Delicio (ANR-19-CE23-
0006).
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1.3 contributions 7

In Chapter 2 we provide the reader with the essentials required to introduce the
field of Structured Deep Reinforcement Learning. We give a high level overview
of Supervised Learning, Reinforcement Learning, Deep Learning, Deep Rein-
forcement Learning and classical robotic navigation. The prerequisites required
to introduce the contributions made during this thesis are vast, so we do not
endeavor to provide a detailed descriptions of all related works.

In Chapter 3 we introduce a set of interactive reward-based tasks in 3D envi-
ronments, that we have developed in order to benchmark memory-based Deep
RL agents. These tasks involve navigation in procedurally generated labyrinths
from an egocentric perspective, where observations are rendered with a virtual
monocular camera. The tasks require the agent to learn to recognize objects and
semantics through interaction with its environment. We conduct an analysis of
the agent’s internal “hidden” state representations, in order to understand how
the agent reasons about its current task. Then, in Chapter 4 we adapt and extend
the agent’s neural network architecture with structured representations based on
projective geometry, metric maps and agent ego-motion. This agent architecture
called “EgoMap” augments the agent’s performance on the memory-based tasks
we created in the previous chapter and provided interpretable attention maps,
which can be analyzed to comprehend the reasoning process of the agent.

After considering agents with metric maps, we explored the addition of topo-
logical memory as part of an agent’s architecture. Where we developed a learned
Neural Planner which learns to perform shortest path planning in graphs with
uncertain connectivity and generalizes to unseen graphs sampled for new envi-
ronment instances. We present this publication in Chapter 5, where we couple
the Neural Planner with a low-level controller for planning and navigation in
photo-realistic 3D environments.

Chapter 6 represents work undertaken during a 4-month internship at Ubisoft
LaForge, Montreal. This work explores the application of Deep RL in vast video
game environments with complex action spaces. In addition to creating the
environment and learning an end-to-end RL policy, we augment the policy with
a graph-based classical planner to perform hierarchical planning and low-level
control.

In chapter 7 we develop an open-source Deep RL interface for a widely known
open-source Game Engine, Godot. The tool we have developed allows for re-
searchers, hobbyists and game designers to build and interface with worlds and
games free of charge, learning agent behaviors with state-of-the-art Deep RL
algorithms.

List of publications � This manuscript is based on the material published in
the following papers:

• Edward Beeching, Jilles Dibangoye, Olivier Simonin, and Christian Wolf
(2020a). “Deep Reinforcement Learning on a Budget: 3D Control and
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Reasoning Without a Supercomputer.” In: Proceedings of the International
Conference on Pattern Recognition (ICPR) - Chapter 3;

• Edward Beeching, Jilles Dibangoye, Olivier Simonin, and Christian Wolf
(2020c). “EgoMap: Projective mapping and structured egocentric memory
for Deep RL”. in: Proceedings of the European Conference on Machine Learning
and Knowledge Discovery in Databases (ECML-PKDD) - Chapter 4;

• Edward Beeching, Jilles Dibangoye, Olivier Simonin, and Christian Wolf
(2020d). “Learning to plan with uncertain topological maps.” In: Proceed-
ings of the IEEE European conference on computer vision (ECCV) - (spotlight
presentation) - Chapter 5;

• Edward Beeching, Maxim Peter, Philippe Marcotte, Jilles Dibangoye, Olivier
Simonin, Romoff Joshua, and Christian Wolf (2022b). “Graph augmented
Deep Reinforcement Learning in the GameRLand3D environment”. In:
Association for the Advancement of Artificial Intelligence Conference on Artificial
Intelligence (AAAI). Workshop on Reinforcement Learning in Games - Chapter 6;

• Edward Beeching, Jilles Dibangoye, Olivier Simonin, and Christian Wolf
(2022a). “Godot Reinforcement Learning Agents”. In: Association for the
Advancement of Artificial Intelligence Conference on Artificial Intelligence (AAAI).
Workshop on Reinforcement Learning in Games - Chapter 7;
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In this chapter, we provide a foundation to the reader in order to introduce
the domain of Structured Deep Reinforcement Learning. We start with a brief
overview of Supervised Learning and Reinforcement Learning. We then in-
troduce Deep Learning, first through the building blocks of Deep Neural Net-
work architectures: Multi-Layer Perceptron (MLP)s, Convolutional Neural Net-
work (CNN)s, Recurrent Neural Network (RNN)s, attention-based and Graph
Neural Network (GNN). We then provide a broader overview of applications of
Deep Learning in supervised settings. With this grounding, we can begin the
introduction to Deep Reinforcement Learning, Embodied AI environments and
finally Structured Deep Reinforcement Learning.

2.1 Supervised Learning

In a nutshell, supervised learning is the process of learning the internal parameters
of a predictive model using labeled data and then using the model to estimate the
labels of new data. Formally given a set of n pairs of examplesD = {xi, yi} where
xi is an input (vector, image, time-series) and yi is an output label. We would like
to learn a parametric function f (x;w) that maps an input x to an estimate of its
output ŷ. Ideally, we would like to learn a predictive model that performs equally
well on unseen validation and test data which have been drawn from the same
underlying distribution. So that the model has identified patterns and regularities
in the pairs of examples, rather than memorizing exactly the examples that were
used for learning the model parameters. Using the framework of Empirical Risk
Minimization, we wish to learn a hypothesis h : X → Y , assuming there is a
joint probability distribution P (x, y) and the examples (xi, yi) in our dataset are
drawn from P (x, y). Broadly, supervised learning is split into two categories
regression and classification. Both of these are relevant to applications of Deep
Reinforcement Learning (RL), as we might treat the problem of estimating the
value of a given state as regression, or consider learning a policy to estimate the
best discrete action to take in a given state a form of classification problem.

2.1.1 Regression

When we perform regression, the estimates of our predictive model are scalar
values, for this text we will restrict ourselves to estimating a single scalar value,
ŷi, per example xi:

ŷi = f (xi;w). (2.1)
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In the most simple case, where both xi and yi are single scalar values and the
model is linear, this surmounts to learning the slope and intercept of f (x;w),

ŷ = f (x;w) = w0 + xw1. (2.2)

The most common algorithm for learning these parameters is that of Least
Squares Linear Regression or simply Linear Regression. Which aims to minimize
the square differences between the model target predictions ŷi the target yi.
Formally we have to optimize for the parameters:

min
w
‖XwT − y‖2

2. (2.3)

Where X is a matrix that contains all of the n examples. In order to learn
the intercept, a value of 1 is appended to each input x. There are a variety of
techniques to identify the optimal parameters w∗. If memory is not a concern and
all data points are available the closed-form solution is:

w = (XTX)−1XTY . (2.4)

Where X and Y are matrices that are a concatenation of input and outputs respec-
tively. Alternatively, the parameters can be found iteratively through Stochastic
Gradient Descent (SGD) where we take steps toward the optimal parameters w∗

by making estimates and computing their error derivatives. To do this, we must
first define a loss function L(x, y;w):

L(x, y;w) = (y− ŷ)2 = (y− f (x;w)2 = (y− w0 − xw1)
2. (2.5)

We can then calculate the analytic partial derivatives of the loss function with
respect to its learn-able parameters w. Where in the case of the two-parameter
example are:

∂L(xi, yi;w)

∂w0
= yi − ŷi,

∂L(xi, yi;w)

∂w1
= xi(yi − ŷi).

(2.6)

In the linear setting, the loss function is convex, which means there is a single
global minimum. Performing gradient descent from any initialization of the
parameters w will eventually lead to the optimal solution. It is worth noting that
the optimal parameters for a particular dataset do not necessarily correspond to the
best performing parameters on data not observed during the optimization process.
As we move to non-convex optimization in the Deep Learning section 2.3, we will
be performing optimization of non-convex functions. While we have discussed
here closed-form and first-order gradient-based solutions, there are a number
of other methods and solvers that will find solutions to convex optimization
problems in far few iterations (Gill et al. 2019) is an excellent reference for further
information.
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2.1.2 Classi�cation

In the classification setting, instead of scalar values, the labels y represent several
distinct classes. The example shown here is that of binary classification where
there are two classes. But this can be extended to the multi-class setting. A
common algorithm for binary classification is that of Logistic Regression, which is
a generalized linear model for classification. The formulation is similar to that of
the regression setting:

ŷi = f (xi;w). (2.7)

But in this case, we desire the prediction ŷ to be a value from the set {0, 1}.
This is typically achieved by using a logistic or sigmoid function on the output
of f , which restricts the output range to be in 0-1, predictions from the trained
model can be thresholded to compute the predicted class label:

ŷi = f (xi;w) =
1

1 + e−(x
T
iw)

. (2.8)

Learning the parameters of this model can be achieved through gradient decent.
To the authors’ knowledge, unlike the case of Linear Regression, there is no
general closed-form solution to the problem of Logistic Regression, although
solutions exist for some specific cases (Lipovetsky 2015).

2.1.3 Regularization

Often the number of parameters available to the model exceeds the number
required to model the underlying phenomenon. A-priori, unless the problem is
trivial, it is unlikely that the required number of parameters can be estimated
and must be found empirically. A technique to reduce the impact of an over-
parameterized model is that of weight-decay, where the norm (typically l2) of the
model’s weight coefficients is penalized by adding it to the loss function, scaled by
a Lagrange factor λ. By iteratively decaying the weights by a proportion of their
magnitude, at each update step. This method restricts the number of large weight
coefficients which in turn reduces over-fitting. Weight regularization has become
ubiquitous when creating large deep networks and modifies the loss function as
follows:

Lcombined(X ,Y ;w) = Lpredictions(X ,Y ) + λ|wTw|2. (2.9)

2.2 Reinforcement Learning

The objective of RL is to learn a policy π that maps states s to actions a in a
reward-based environment, with the actions that are selected maximizing the
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38 CHAPTER 3. FINITE MARKOV DECISION PROCESSES

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

its action, the agent receives a numerical reward , Rt+1 ∈ R ⊂ R, and finds itself in a new state, St+1.4

The MDP and agent together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite number of
elements. In this case, the random variables Rt and St have well defined discrete probability distribu-
tions dependent only on the preceding state and action. That is, for particular values of these random
variables, s′ ∈ S and r ∈ R, there is a probability of those values occurring at time t, given particular
values of the preceding state and action:

p(s′, r |s, a)
.
= Pr{St=s′, Rt=r | St−1 =s,At−1 =a}, (3.2)

for all s′, s ∈ S, r ∈ R, and a ∈ A(s). The dot over the equals sign in this equation reminds us that it
is a definition (in this case of the function p) rather than a fact that follows from previous definitions.
The function p : S×R× S×A→ [0, 1] is an ordinary deterministic function of four arguments. The ‘|’
in the middle of it comes from the notation for conditional probability, but here it just reminds us that
p specifies a probability distribution for each choice of s and a, that is, that

∑

s′∈S

∑

r∈R
p(s′, r |s, a) = 1, for all s ∈ S, a ∈ A(s). (3.3)

The probabilities given by the four-argument function p completely characterize the dynamics of a
finite MDP. From it, one can compute anything else one might want to know about the environment,
such as the state-transition probabilities (which we denote, with a slight abuse of notation, as a three-
argument function p : S× S×A→ [0, 1]),

p(s′ |s, a)
.
= Pr{St=s′ | St−1 =s,At−1 =a} =

∑

r∈R
p(s′, r |s, a). (3.4)

We can also compute the expected rewards for state–action pairs as a two-argument function r : S×A→
R:

r(s, a)
.
= E[Rt | St−1 =s,At−1 =a] =

∑

r∈R
r
∑

s′∈S
p(s′, r |s, a), (3.5)

or the expected rewards for state–action–next-state triples as a three-argument function r : S×A×S→
R,

r(s, a, s′)
.
= E[Rt | St−1 =s,At−1 =a, St = s′] =

∑

r∈R
r
p(s′, r |s, a)

p(s′ |s, a)
. (3.6)

it simply as A.
4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next reward and next

state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are widely used in the literature.

Figure 2.1: Agent-environment interaction in a Markov decision process. Fig-
ure from (Barto 2021).

cumulative reward received as the agent interacts with the environment. In
this section, we provide a formal definition of a decision-making problem, a
concrete example of an interactive environment and detail a tabular reinforcement
learning algorithm that solves the example problem. Figure 2.1 shows the typical
environment-agent interaction loop. An RL agent typically performs a sequence of
actions in the environment over the course of an episode or trajectory, which ends
in a termination condition. The termination condition typically corresponds to a
state corresponding to success or failure, but may be triggered when a maximum
number of actions per episode has been exceeded.

2.2.1 Markov Decision Processes

An Markov Decision Process (MDP) provides a formal definition for a sequential
decision making process, defined as a tuple 〈S ,A,P ,R, γ〉 where:

• S : a finite set of states

• A: a finite set of actions

• P : a state transition probability matrix, P(s′|s, a)

• R: a reward function

• γ: a discount factor ∈ (0, 1]

An important property of an MDP is that the process is Markov, that is the
optimal action to take for a particular state does not depend on the history of
actions and states the agent has previously visited, the current state provides all
the information the agent is required to act. As we move to Partially Observable
Markov Decision Process (POMDP)s in section 2.5 we will see how the inclusion
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of a partial observation of state, breaks the Markov property at least from the
agent’s perspective. The policy π(s) can represent a stochastic distribution of
possible action or a deterministic mapping from states to actions, depending on
the algorithm and setting. When learning a policy that aims to solve an MDP we
typically aim to maximize the expected cumulative sum of rewards, for trajectories
or episodes in the environment, known as the total reward criterion for finite-
horizon MDP (Puterman 1990). Ideally, we would find a policy that maximizes the
expected sum of rewards for each trajectory, τ, a sequence of states and actions
sampled from our policy π interacting in the environment from an initial state s0
to a terminal state sT :

Eτ∼π

[
T

∑
t=0

r (st, at)

]
. (2.10)

The work presented in this thesis looked the optimize the discounted reward
criterion. Provided with a trajectory τ of experience of length T, sampled for a
given policy π in an MDP. The discounted return Gt can be calculated for each
step on the trajectory, as the sum of all the reward received after a particular
time-step t, discounted by how far into the future they were received, with the
discount factor γ:

Gt =
T

∑
t′=t

γt′−tr(st′ , at′). (2.11)

We can also estimate the expected return of a given state s when acting under a
particular policy π, this is the value of a state, Vπ(s):

Vπ (st) =
T

∑
t′=t

Eπ

[
γt′−tr (st′ , at′) | st

]
. (2.12)

The discount factor γ means that we now aim to maximize a discounted total
reward and is included for several reasons:

• Credit assignment, by limiting the temporal extent of a reward, we facilitate
the identification of the appropriate actions that led to that reward.

• Bounding Vπ (s), the discount factor ensures an upper limit in the infinite
horizon setting.

• A further loose reasoning for the discount factor is that future rewards are of
less value than rewards now, this has some relations with interest, inflation
and growth of population. The reality is that, particularly in the Deep RL
setting, the optimization problem is less challenging.
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Figure 2.2: An example grid-world problem Left: An example RL problem, a grid-
world with two terminal states in the top right and center right, with
the starting state in the bottom left corner. Actions are deterministic
and include moving left, right, up and down. Right: the values of each
state for the optimal policy π∗ with a γ factor of 0.9, with optimal
actions show as orange arrows.

2.2.2 A concrete example

To ground the theory of Markov Decision Processes and RL algorithms we intro-
duce the following toy example sequential decision-making problem, shown in
Figure 2.2. In this grid world problem the agent starts in the bottom left and we
wish to learn a policy that navigates to the top right cell. There are two terminal
states, where the episode ends and the agent needs to be “reset" to its starting
point, these are located on the upper right side indicated by the positive and
negative rewards. As the objective is to learn a policy that maximizes cumulative
reward, the end policy we aim to learn will navigate to the cell with a +1 reward.
In Figure 2.2 we also show the value estimates of each state under a policy which
outputs optimal actions π∗.

We will now introduce a well known method for solving this example MDP
that can be applied to this form of decision making problem, tabular Q-learning
(Watkins et al. 1992).

2.2.3 Tabular Q-learning

In tabular Q-learning (Watkins et al. 1992) for each state we aim to estimate
the discounted return we will receive when the agent takes a particular action,
transitions to the next state and then follows the actions that it estimates will
maximize future discounted reward for the current policy. For each state, we have
a table of estimated return for each state-action pair, the “best" action to chose
is the action with the highest estimate of future return. Formally we define the
following action-value function Q(s, a) and perform updates according to the
following learning rule:
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Q (st , at)← Q (st , at) + α
[
rt+1 + γ max

a
Q (st+1, a)−Q (st , at)

]
. (2.13)

Where γ is the discount factor and α is a learning rate parameter. This equation
does not, however, detail how to sample the transitions st, at, rt+1 and st+1. This
leads us to a fundamental dilemma in RL, the exploration-exploitation trade-off.
Should we be confident in the estimates of current Q-function and take the actions
that we estimate will lead to the most cumulative reward, or should we perform
exploration in order to discover potentially higher sources of reward? Q-learning,
and its Deep Q-learning variants, discussed in section 2.5, use an extremely
simple exploratory strategy called ε-greedy. In ε-greedy exploration at the start
of learning typically 95% of the time a random action is selected from a uniform
distribution of the available actions and 5% of the time “best” action is chosen,
according to the current Q-value function. In most cases, the percentage decreases
linearly over time, so that as the Q-value estimates become more robust, fewer
random actions are taken. The entire algorithm is shown in 2.1. We will discuss
the exploration-exploitation trade-off further in section 2.5.

Algorithm 2.1 Tabular Q-learning
Initialize Q(s, a) for all s ∈ S, a ∈ A, arbitrarily
while Q is not converged do

Initialize S
while s is not terminal do

Choose action a for s using policy derived from Q (e.g. ε-greedy)
Take action a, observe r, s′

Q (st , at)← Q (st , at) + α [rt+1 + γ maxa Q (st+1, a)−Q (st , at)]
s← s′

end while
end while

2.3 Deep Learning

In this thesis, we investigate Deep RL approaches to planning and navigation
problems. Which combines and extends classical RL algorithms with the non-
linear function approximation of Deep Neural Networks, expanding the problem
settings that RL can be applied in. Before we can introduce Deep RL, we must first
cover the groundwork of Deep Learning. In this section, we introduce some of
the key building blocks for the construction of neural network architectures.
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Figure 2.3: A fully connected multi-layer perceptron with one hidden layer, pre-
dicting a single scalar value. Arrows correspond to weight-input
multiplications. Biases and non-linearities omitted for clarity.

2.3.1 Multi-Layer Perceptrons

Fully connected neural networks build upon Rosenblatt’s perceptron neuronal
model (Rosenblatt 1958). In section 2.1 we introduced an example of supervised
learning, Linear Regression, which performs a linear multiplication of the input
vector x with a weight vector w. In a fully connected layer of a neural network,
many of these multiplications are performed in parallel with a weight matrix
W . Figure 2.3 shows an MLP, which stacks these linear operations repeatedly
such that there are many layers of matrix multiplications in the function f (x;W ),
which could naively be performed as following:

ŷ = f (x;W ) =W1W0x
T. (2.14)

Of course, the repeated matrix multiplications in equation (2.14) correspond to a
linear transformation, as the matrices W1 and W0 can be equally be represented
by a matrix W =W1W0. As the objective is to perform non-linear transforms of
the input data, an activation function g is generally applied to the output of each
matrix multiplication:

ŷ = f (x;W ) = g1(W1, g0(W0x
T)). (2.15)
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Figure 2.4: Neural Network activation functions. Top row: 6 common activation
functions used in neural network architecture. Bottom row, the first
order derivative of each activation function.

Generally, the same activation function is used throughout the network, with
the exception of the last layer. In the case of multi-class classification a softmax
function is typically used:

σ(z)i =
ezi

∑K
j=1 ezj

. (2.16)

In the case of regression an identity function (no activation), however there are
special cases where, for example, the aim is to regress a bounded range, that a
specific activation can be used.

There are many activation functions available, each with its own distinct prop-
erties, advantages and disadvantages. We provide an overview of some popular
activation functions and their first-order derivatives in Figure 2.4. For many
years, the sigmoid and tanh functions were popular in the field of Deep Learning,
however, these suffer from this issue of “vanishing gradients", when the functions
begin to saturate the gradient becomes near 0. This effect is compounded as
networks become deeper due to the multiplicative aspect of back-propagation
2.3.5. As deeper networks have become more popular, practitioners have moved
to the ReLU activation function for two main reasons: simplicity, and that the
gradient of a ReLU function is either one or zero. This has led to other challenges
such a “dead" ReLUs which output zero for every input in the dataset, there have
been efforts to address this (Clevert et al. 2015).

2.3.2 Convolutional Neural Networks

Few would disagree that CNNs have revolutionized the field of computer vision.
As researchers approached the problem of learning with images, they looked for
solutions that are equivariant to translation. Convolutions have this property, and
can be applied as 1D, 2D or 3D filters, or kernels. In this thesis, we apply CNNs
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Figure 2.5: Network architecture proposed by Fukushima demonstrating how
classification can be performed on digits. Figure from (Fukushima
et al. 1982)

to 2D images or 2D virtual camera observations, so the examples shown in this
section will focus on this domain of application, but are equally applicable to
1D and 3D data. The CNN implementation that inspired so many others is that
of AlexNet (Krizhevsky et al. 2012) which won the 2012 ImageNet competition
by a large margin. The idea of CNNs dates back to Fukushima, (Fukushima et al.
1982) who designed a feed-forward layer-based network architecture, that uses
convolution operations to extract feature representation shown in Figure 2.8. To
the authors’ knowledge the first learning-based implementation of CNNs was that
of LeNet (LeCun et al. 1989), where they were used to perform handwritten digit
recognition.

If we consider a convolution filter f applied to a 2D image I , where the pixels of
the image can be indexed with I[i, j], this filter has a certain height h and width w,
typically filters in neural network architectures are small 3× 3 and square, relying
on repeated layers of convolutions to capture dependencies between far-away
pixels. The filter f contains h× w parameters, which we would like to learn. We
show this schematically in Figure 2.6. The mathematical operations required to
apply f to I in order to produce an output, G are:

G[m, n] = ∑
i

∑
j

f [j, k]I[m− j, n− k] (2.17)
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Figure 2.1: (No padding, unit strides) Convolving a 3 × 3 kernel over a 4 × 4
input using unit strides (i.e., i = 4, k = 3, s = 1 and p = 0).

Figure 2.2: (Arbitrary padding, unit strides) Convolving a 4× 4 kernel over a
5 × 5 input padded with a 2 × 2 border of zeros using unit strides (i.e., i = 5,
k = 4, s = 1 and p = 2).

Figure 2.3: (Half padding, unit strides) Convolving a 3× 3 kernel over a 5× 5
input using half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1).

Figure 2.4: (Full padding, unit strides) Convolving a 3× 3 kernel over a 5× 5
input using full padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 2).

14

Figure 2.6: An example convolution of a 3× 3 filter over a 5× 5 input, the input
is padded in so that the output is of the same size as the input. Figure
from (Dumoulin et al. 2018).

The operations of the convolution are spatially equivariant, if the image I contains
the same features in the top-left and bottom-right corner, the outputs in these
regions will be the same.

Convolutions are stacked in many layers in order to extract more high-level
features. In early layers filters respond to low level details such as edges, as
we move to deeper layers the filters learn to detect more complex features, see
Figure 2.7 which shows a visualization from (Zeiler et al. 2014). In addition to
convolutions, the AlexNet, LeNet and many other CNN architectures interleave
convolutions with the Max-Pooling operation, which down-samples feature-maps
by selecting the highest activation within a small, typically 2×2 region. Although
in recent years the Max-Pooling operation has begun to fall out of favor, with the
preferred methods of down-sampling being strided convolutions.

There have been many extensions, refinements and improvements to the
AlexNet architecture. Here we discuss a few notable mentions, but make no
attempt to create an exhaustive list. The VGG architecture (Simonyan et al. 2014)
won the 2014 ImageNet challenge by increasing the depth to 19 weight layers and
reducing the convolutional filter size to 3× 3. The popular ResNet architecture (He
et al. 2016) created a CNN with 152 layers which came first in the 2015 ImageNet
challenge, they achieved such a depth by using “residual connections” which
allow for shortcuts in the computation graph when performing back-propagation,
alleviating the issue of vanishing gradients, these networks have some similarities
with Highway Networks (Srivastava et al. 2015). While many architectures looked
to improve performance with depth and additional parameters, the SqueezeNet
architecture (Iandola et al. 2016) achieved AlexNet (Krizhevsky et al. 2012) per-
formance with 50× fewer parameters. DenseNets (Huang et al. 2017) explore the
approach of neural networks with highly interconnected layers, where each layer
in the network is connected to all of its proceeding layers. ResNeXt (Xie et al.
2017) performs aggregated residual transforms, where similar sets of transforma-
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Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

Figure 2.7: CNN filter visualization for a fully trained model. Shown are the top
9 activations on a random subset of feature maps. The reconstructions
are not samples from the model, they are reconstructions of the features
from the validation data that cause high activations in the model.
Figure from (Zeiler et al. 2014).

tions are grouped to simplify the network architecture and reduce the number
of hyper-parameters to evaluate. As CNN architectures have become ever more
present on mobile devices, smaller and more efficient networks have become more
desirable. MobileNet (Howard et al. 2019) and EfficientNet (Tan et al. 2020) are
network architectures that are equally as performant while being smaller in size
and having faster inference times.

2.3.3 Processing sequences

The need to process sequences of data arises in many fields, such as time-series
data from sensors or sequences of words in Natural Language Processing (NLP).
In this subsection, we discuss Deep Neural Network architectures for the analysis
and extraction of information from sequences. This is particularly relevant in the
field of sequential decision making in robotics, where we would like an agent
to learn to remember key information it observed in the past and store it in an
internal representation or “hidden-state”. Sequences of are typically represented
as ordering of vectors [x0,x1, ...,xt]. When building predictive models that work
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model top-1 err. top-5 err.

VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.

VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that
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relu

3x3, 64

3x3, 64

relu

relu

64-d 256-d

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56×56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1×1, 3×3, and 1×1 convolutions, where the 1×1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3×3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.

6

Figure 2.8: Two ResNet blocks from the ResNet (He et al. 2016) architecture. Left:
a typical ResNet building block, right: a “bottle" block, used in deeper
ResNet architectures. Figure from (He et al. 2016).

on sequences, there are many combinations of input and output, depending on
the desired application, some examples are shown in Figure 2.13.

2.3.3.1 Recurrent Neural Networks

We will introduce three common recurrent network architectures that are used in
the processing of sequences in Deep Learning architectures. Recurrent models
condition their output on the current input xt and an internal hidden state vector
ht−1, and output the hidden state for the next time-step ht.

The classic vanilla RNN (Elman 1990) is a linear transformation of the inputs
xt and ht−1 with the addition of a bias term. In order to bound the outputs to a
range of -1.0 to 1.0, a tanh non-linearity is applied to the output.

ht = tanh (Wihxt + bih + Whhht−1 + bhh) (2.18)

While the vanilla RNN is a powerful sequence processing tool, it comes with
some downsides. It struggles with longer-term dependencies, see Figure 2.10. This
phenomenon was studied in some detail by (Hochreiter et al. 2001; Bengio et al.
1994) who identified some of its deficiencies, which lead to the development of the
more widely used RNN architecture, Long-Short Term Memory (LSTM) (Hochreiter
et al. 1997a).

2.3.3.2 Gated RNN Variants

The LSTM architecture was designed to address the weaknesses of standard RNN.
It achieves this through the use of gating mechanisms and two internal states, a
cell-state ct and a hidden state ht. The gating mechanisms in the LSTM architecture
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Figure 2.9: Input/Output configurations of sequences. Each rectangle is a vector
and arrows represent functions (e.g. matrix multiply). Input vectors
are in red, output vectors are in blue and green vectors hold the RNN’s
state. From left to right: (1) Vanilla mode of processing without RNN,
from fixed-sized input to fixed-sized output (e.g. image classification).
(2) Sequence output (e.g. image captioning takes an image and outputs
a sentence of words). (3) Sequence input (e.g. sentiment analysis
where a given sentence is classified as expressing positive or negative
sentiment). (4) Sequence input and sequence output (e.g. Machine
Translation: an RNN reads a sentence in English and then outputs
a sentence in French). (5) Synced sequence input and output (e.g.
video classification where we wish to label each frame of the video).
Notice that in every case are no pre-specified constraints on the lengths
sequences because the recurrent transformation (green) is fixed and can
be applied as many times as we like. Figure and text from (Karpathy
2015)

control the flow of information from one time-step to the next and consists of it the
input gate, ft the forget gate, gt the cell gate and it the output gate. The equations
for the operation of an LSTM are shown in (2.19), where � is the Hadamard
product.

it = σ (Wiixt + bii + Whiht−1 + bhi)
ft = σ

(
Wi f xt + bi f + Wh f ht−1 + bh f

)
gt = tanh

(
Wigxt + big + Whght−1 + bhg

)
ot = σ (Wioxt + bio + Whoht−1 + bho)
ct = ft � ct−1 + it � gt
ht = ot � tanh (ct)

(2.19)

Since the invention of the LSTM module, there have been many attempts to
improve upon it, but little success. One architecture has found its place as a
competitor, the Gated Recurrent Unit (GRU) (Chung et al. 2014). GRUs have
comparable performance to LSTM but with a simpler architecture and a single
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Figure 2.10: Long term dependencies in a sequence processing problem the
output ht+1 depends on the inputs x0 and x1, vanilla RNNs tend
to struggle when they are required to store information of many
time-steps. Figure from (Olah 2015).

hidden state vector. GRUs also include gating mechanisms rt the reset gate, zt the
update gate and nt the new gate. The equations for the operation of an GRU are
shown in (2.20).

rt = σ (Wirxt + bir + Whrht−1 + bhr)

zt = σ (Wizxt + biz + Whzht−1 + bhz)

nt = tanh (Winxt + bin + rt ∗ (Whnht−1 + bhn))

ht = (1− zt) ∗ nt + zt ∗ ht−1

(2.20)

Bidirectional variants of the aforementioned RNN architectures are also available
and have been shown to perform well on sequences, such as video classification
(Baccouche et al. 2011). Bidirectional RNN are not applicable to the field of
sequential decision making so will not be discussed further.

2.3.3.3 Attention-based Networks

As humans we read and parse text sequentially, consuming one word token at
a time, however, we often refer back or attend to earlier parts of a text in order
to comprehend the overall meaning of a sentence or paragraph. An example of
this when humans perform translation, consider the French sentence “L’accord
sur la zone économique européenne a été signé en août 1992” which translates
to “The agreement on the European Economic Area was signed in August 1992".
Although this is almost a one-to-one translation, the ordering of parts of the text
such as “European Economic Area" are reversed. RNNs and their variants can find
these dependencies challenging, as we rely on the capacity of a 1D vector to store
this information of many time-steps, this can be particularly challenging with
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languages that structure their sentences in a very different order, such as Turkish
or Russian.

Recent works on attention-based Deep Learning methods have led to great leaps
in performance in NLP, with (Vaswani et al. 2017b) demonstrating the power of
this architecture and self-supervised training of the well known BERT (Devlin et al.
2018) model outperforms many other approaches on eleven NLP benchmarks.

The general principle is as follows, given a sequence of inputs [x0, x1, ..., xt]
the attention operation performs three linear transforms in order to produce
a sequence of keys [k0, k1, ..., kt] = K, values [v0, v1, ..., vt] = V and queries
[q0, q1, ..., qt] = Q. By performing a dot-product comparison of similarity be-
tween the queries and keys, the network can learn to attend to different semantic
concepts and features in the input sequence:

Attention(Q,K ,V ) = softmax
(
QKT
√

dk

)
V (2.21)

Where the normalizing factor dk is the size of the key vector. The attention
distribution is calculated between the key and query pairs, but the output is a
weighted average of the value vectors, allowing the network query and pass on
information that is different to those is used to calculate the attention score.

By stacking and repeating this operation, shown in Figure 2.11, the network
can learn to reason about complex interrelated concepts. For more detailed
explanation of this method we refer to reader to The Annotated Transformer
(Vaswani et al. 2017c), created by the author of (Vaswani et al. 2017b). Since their
first release in 2017 there have been many improvements and applications of
the technology across various domains, the Transformers repository (Wolf et al.
2019a) provides both an Application Programming Interface (API) and pre-trained
models for NLP tasks.

2.3.3.4 Structured memory architectures

The principle of attention mechanisms has also been extended to augmented
RNNs, the Neural Turing Machine (Graves et al. 2014) is an attention augmented
recurrent neural network that contains a memory that can be addressed through
attention. There have been several extensions to this architecture including the
Differentiable Neural Computer (Graves et al. 2016) and (Rae et al. 2016). There are
implementations of RNNs that attempt to compensate for the loss of information
through time and vanishing gradients by processing information with a temporal
hierarchy, (Koutnik et al. 2014; Neverova et al. 2016).
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Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Figure 2.11: The transformer architecture applied to a self-supervised word clas-
sification task. Figure from (Vaswani et al. 2017b).

2.3.4 Graph Neural Networks

While fully connected networks process order-independent vectors on input,
CNNs work with images with spatial invariance and RNNs for sequential reasoning
with time invariance. GNNs operate on networks of nodes and edges and aim to
be invariant to node and edge permutations.

Graph neural networks have gained popularity in recent years, but have a
long history (Battaglia et al. 2018a). GNNs have been applied in many domains
including for supervised learning, unsupervised learnin and RL. GNNs operate
well on tasks that have a relational structure between nodes and have shown
to be effective on Visual Question Answering (VQA) tasks (Raposo et al. 2017),
learning the dynamics of physical systems (Chang et al. 2016; Baradel et al.
2020), predicting the properties of molecular chemicals (Duvenaud et al. 2015),
translation systems (Gulcehre et al. 2018) and Deep RL (Hamrick et al. 2018).

This section uses the notation of (Battaglia et al. 2018a) for describing the
operations in graph neural networks, refer to their work for a detailed overview.
Formally a graph is defined as a tuple G = (V, E), where V = {vi}i=1,Nv , each vi
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This enables a form of pattern completion whereby the value recovered 
by reading the memory location includes additional information that 
is not present in the key. In general, key-value retrieval provides a rich 
mechanism for navigating associative data structures in the external 
memory, because the content of one address can effectively encode 
references to other addresses.

A second attention mechanism records transitions between conse-
cutively written locations in an N ×  N temporal link matrix L. L[i, j] 
is close to 1 if i was the next location written after j, and is close to 0 
otherwise. For any weighting w, the operation Lw smoothly shifts the 
focus forwards to the locations written after those emphasized in w, 
whereas L⊤w shifts the focus backwards. This gives a DNC the native 
ability to recover sequences in the order in which it wrote them, even 
when consecutive writes did not occur in adjacent time-steps.

The third form of attention allocates memory for writing. The ‘usage’ 
of each location is represented as a number between 0 and 1, and a 
weighting that picks out unused locations is delivered to the write head. 
As well as automatically increasing with each write to a location, usage 
can be decreased after each read. This allows the controller to reallocate 
memory that is no longer required (see Extended Data Fig. 1). The 
allocation mechanism is independent of the size and contents of the 
memory, meaning that DNCs can be trained to solve a task using one 
size of memory and later upgraded to a larger memory without retrain-
ing (Extended Data Fig. 2). In principle, this would make it possible to 
use an unbounded external memory by automatically increasing the 
number of locations every time the minimum usage of any location 
passes a certain threshold.

The design of the attention mechanisms was motivated largely by 
computational considerations. Content lookup enables the formation 
of associative data structures; temporal links enable sequential retrieval 
of input sequences; and allocation provides the write head with unused 
locations. However, there are interesting parallels between the memory 
mechanisms of a DNC and the functional capabilities of the mamma-
lian hippocampus. DNC memory modification is fast and can be one-
shot, resembling the associative long-term potentiation of hippocampal 
CA3 and CA1 synapses22. The hippocampal dentate gyrus, a region 
known to support neurogenesis23, has been proposed to increase rep-
resentational sparsity, thereby enhancing memory capacity24: usage-
based memory allocation and sparse weightings may provide similar 

facilities in our model. Human ‘free recall’ experiments demonstrate 
the increased probability of item recall in the same order as first pre-
sented—a hippocampus-dependent phenomenon accounted for by the 
temporal context model25, bearing some similarity to the formation of 
temporal links (Methods).

Synthetic question answering experiments
Our first experiments investigated the capacity of the DNC to perform 
question answering. To compare DNCs to other neural network archi-
tectures, we considered the bAbI dataset26, which includes 20 types of 
synthetically generated questions designed to mimic aspects of textual 
reasoning. The dataset consists of short ‘story’ snippets followed by 
questions with answers that can be inferred from the stories: for exam-
ple, the story “John is in the playground. John picked up the football.” 
followed by the question “Where is the football?” with answer “play-
ground” requires a system to combine two supporting facts, whereas 
“Sheep are afraid of wolves. Gertrude is a sheep. Mice are afraid of 
cats. What is Gertrude afraid of?” (answer, “wolves”) tests its facility at 
basic deduction (and resilience to distractors). We found that a single 
DNC, jointly trained on all 20 question types with 10,000 instances 
each, was able to achieve a mean test error rate of 3.8% with task failure 
(defined as > 5% error) on 2 types of questions, compared to 7.5% mean 
error and 6 failed tasks for the best previous jointly trained result21. We 
also found that DNCs performed much better than both long short-
term memory27 (LSTM; at present the benchmark neural network for 
most sequence processing tasks) and the neural Turing machine16 
(see Extended Data Table 1 for details). Unlike previous results on this 
dataset, the inputs to our model were single word tokens without any 
preprocessing or sentence-level features (see Methods for details).

Graph experiments
Although bAbI is presented in natural language, each declarative sen-
tence involves a limited vocabulary and is generated from a simple triple  
containing an actor, an action and a set of arguments. Such sentences 
could easily be rendered in graphical form: for example “John is in the 
playground” can be diagrammed as two named nodes, ‘Playground’ and 
‘John’, connected by a named edge ‘Contains’. In this sense, the prop-
ositional knowledge in many of the bAbI tasks is equivalent to a set of 
constraints on an underlying graph structure. Indeed, many important 
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Figure 1 | DNC architecture. a, A recurrent controller network receives 
input from an external data source and produces output. b, c, The 
controller also outputs vectors that parameterize one write head (green) 
and multiple read heads (two in this case, blue and pink). (A reduced 
selection of parameters is shown.) The write head defines a write and 
an erase vector that are used to edit the N ×  W memory matrix, whose 
elements’ magnitudes and signs are indicated by box area and shading, 
respectively. Additionally, a write key is used for content lookup to find 
previously written locations to edit. The write key can contribute to 

defining a weighting that selectively focuses the write operation over the 
rows, or locations, in the memory matrix. The read heads can use gates 
called read modes to switch between content lookup using a read key (‘C’) 
and reading out locations either forwards (‘F’) or backwards (‘B’) in the 
order they were written. d, The usage vector records which locations have 
been used so far, and a temporal link matrix records the order in which 
locations were written; here, we represent the order locations were written 
to using directed arrows.
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Figure 2.12: The Differentiable Neural Computer that combines a LSTM with a
2D memory matrix which can be read and written to with an attention
mechanism. Figure from (Graves et al. 2016)

contains node attributes. An example could be a social network where V might
be each user, with attributes such as their hobbies, age and gender. The edges
E = {(ek, rk, sk)}k=1,Ne is the set of edges in the graph where each ek contains
edge attributes, rk is the receiver node and sk the sender node. In the social
network example E might represent connections between friends, family and
colleagues where the edge attributes could hold when the connection was made,
the relation “father", “employer" or “employee". GNNs iteratively update their
internal representations through message passing and aggregation of information.
Typically this is conducted by three update functions, φ, and three aggregation
functions, ρ:

e′k = φe (ek, vrk , vsk , u) e′i = ρe→v (E′i)
v′i = φv (e′i , vi, u) e′ = ρe→u (E′)
u′ = φu (e′, v′, u) v′ = ρv→u (V′)

(2.22)

Where:

E′i =
{(

e′k, rk, sk
)}

rk=i,k=1:Ne

V′ =
{

v′i
}

i=1:Nv

and E′ =
{(

e′krk, sk
)}

k=1:Ne

(2.23)

These operations are combined into a iterative update algorithm, 2.2.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI038/these.pdf 
© [E. Beeching], [2022], INSA Lyon, tous droits réservés
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<latexit sha1_base64="TmBm7ikN3ChoJpDcsfwhm1T5rLk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvYVZkRQZcFNy4r2Ae0Q8mkd9rQTGZMMoUy9DvcuFDErR/jzr8x03ahrQcCh3Pu5Z6cIBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxXe63J6g0j+WjmSboR3QoecgZNVbyexE1oyDMcHbZH/fLFbfmzkHWibckFVii0S9/9QYxSyOUhgmqdddzE+NnVBnOBM5KvVRjQtmYDrFrqaQRaj+bh56RC6sMSBgr+6Qhc/X3RkYjradRYCfzkHrVy8X/vG5qwls/4zJJDUq2OBSmgpiY5A2QAVfIjJhaQpniNithI6ooM7anki3BW/3yOmld1Ty35j1cV+rVZR1FOINzqIIHN1CHe2hAExg8wTO8wpszcV6cd+djMVpwljun8AfO5w/CAJH+</latexit><latexit sha1_base64="TmBm7ikN3ChoJpDcsfwhm1T5rLk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvYVZkRQZcFNy4r2Ae0Q8mkd9rQTGZMMoUy9DvcuFDErR/jzr8x03ahrQcCh3Pu5Z6cIBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxXe63J6g0j+WjmSboR3QoecgZNVbyexE1oyDMcHbZH/fLFbfmzkHWibckFVii0S9/9QYxSyOUhgmqdddzE+NnVBnOBM5KvVRjQtmYDrFrqaQRaj+bh56RC6sMSBgr+6Qhc/X3RkYjradRYCfzkHrVy8X/vG5qwls/4zJJDUq2OBSmgpiY5A2QAVfIjJhaQpniNithI6ooM7anki3BW/3yOmld1Ty35j1cV+rVZR1FOINzqIIHN1CHe2hAExg8wTO8wpszcV6cd+djMVpwljun8AfO5w/CAJH+</latexit><latexit sha1_base64="TmBm7ikN3ChoJpDcsfwhm1T5rLk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvYVZkRQZcFNy4r2Ae0Q8mkd9rQTGZMMoUy9DvcuFDErR/jzr8x03ahrQcCh3Pu5Z6cIBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxXe63J6g0j+WjmSboR3QoecgZNVbyexE1oyDMcHbZH/fLFbfmzkHWibckFVii0S9/9QYxSyOUhgmqdddzE+NnVBnOBM5KvVRjQtmYDrFrqaQRaj+bh56RC6sMSBgr+6Qhc/X3RkYjradRYCfzkHrVy8X/vG5qwls/4zJJDUq2OBSmgpiY5A2QAVfIjJhaQpniNithI6ooM7anki3BW/3yOmld1Ty35j1cV+rVZR1FOINzqIIHN1CHe2hAExg8wTO8wpszcV6cd+djMVpwljun8AfO5w/CAJH+</latexit><latexit sha1_base64="TmBm7ikN3ChoJpDcsfwhm1T5rLk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvYVZkRQZcFNy4r2Ae0Q8mkd9rQTGZMMoUy9DvcuFDErR/jzr8x03ahrQcCh3Pu5Z6cIBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxXe63J6g0j+WjmSboR3QoecgZNVbyexE1oyDMcHbZH/fLFbfmzkHWibckFVii0S9/9QYxSyOUhgmqdddzE+NnVBnOBM5KvVRjQtmYDrFrqaQRaj+bh56RC6sMSBgr+6Qhc/X3RkYjradRYCfzkHrVy8X/vG5qwls/4zJJDUq2OBSmgpiY5A2QAVfIjJhaQpniNithI6ooM7anki3BW/3yOmld1Ty35j1cV+rVZR1FOINzqIIHN1CHe2hAExg8wTO8wpszcV6cd+djMVpwljun8AfO5w/CAJH+</latexit>v0

i
<latexit sha1_base64="eeLXdOBZMDToGpT2JKCAlGanLL8=">AAAB9HicdVDLSgMxFL3js9ZX1aWbYBG7GjK1xXZXcOOygn1AO5RMmmlDMw+TTKEM/Q43LhRx68e482/MtBVU9EDgcM693JPjxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo7bKkokZS0aiUh2PaKY4CFraa4F68aSkcATrONNrjO/M2VS8Si807OYuQEZhdznlGgjuf2A6LHnp9P5xYAPCkVsOxVcrpYRtqv1Oq7UDalVL3EZI8fGCxRhheag8N4fRjQJWKipIEr1HBxrNyVScyrYPN9PFIsJnZAR6xkakoApN12EnqNzowyRH0nzQo0W6veNlARKzQLPTGYh1W8vE//yeon2a27KwzjRLKTLQ34ikI5Q1gAacsmoFjNDCJXcZEV0TCSh2vSUNyV8/RT9T9pl2zFd3VaKjdKqjhycwhmUwIEraMANNKEFFO7hAZ7g2Zpaj9aL9bocXbNWOyfwA9bbJztsklE=</latexit><latexit sha1_base64="eeLXdOBZMDToGpT2JKCAlGanLL8=">AAAB9HicdVDLSgMxFL3js9ZX1aWbYBG7GjK1xXZXcOOygn1AO5RMmmlDMw+TTKEM/Q43LhRx68e482/MtBVU9EDgcM693JPjxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo7bKkokZS0aiUh2PaKY4CFraa4F68aSkcATrONNrjO/M2VS8Si807OYuQEZhdznlGgjuf2A6LHnp9P5xYAPCkVsOxVcrpYRtqv1Oq7UDalVL3EZI8fGCxRhheag8N4fRjQJWKipIEr1HBxrNyVScyrYPN9PFIsJnZAR6xkakoApN12EnqNzowyRH0nzQo0W6veNlARKzQLPTGYh1W8vE//yeon2a27KwzjRLKTLQ34ikI5Q1gAacsmoFjNDCJXcZEV0TCSh2vSUNyV8/RT9T9pl2zFd3VaKjdKqjhycwhmUwIEraMANNKEFFO7hAZ7g2Zpaj9aL9bocXbNWOyfwA9bbJztsklE=</latexit><latexit sha1_base64="eeLXdOBZMDToGpT2JKCAlGanLL8=">AAAB9HicdVDLSgMxFL3js9ZX1aWbYBG7GjK1xXZXcOOygn1AO5RMmmlDMw+TTKEM/Q43LhRx68e482/MtBVU9EDgcM693JPjxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo7bKkokZS0aiUh2PaKY4CFraa4F68aSkcATrONNrjO/M2VS8Si807OYuQEZhdznlGgjuf2A6LHnp9P5xYAPCkVsOxVcrpYRtqv1Oq7UDalVL3EZI8fGCxRhheag8N4fRjQJWKipIEr1HBxrNyVScyrYPN9PFIsJnZAR6xkakoApN12EnqNzowyRH0nzQo0W6veNlARKzQLPTGYh1W8vE//yeon2a27KwzjRLKTLQ34ikI5Q1gAacsmoFjNDCJXcZEV0TCSh2vSUNyV8/RT9T9pl2zFd3VaKjdKqjhycwhmUwIEraMANNKEFFO7hAZ7g2Zpaj9aL9bocXbNWOyfwA9bbJztsklE=</latexit><latexit sha1_base64="eeLXdOBZMDToGpT2JKCAlGanLL8=">AAAB9HicdVDLSgMxFL3js9ZX1aWbYBG7GjK1xXZXcOOygn1AO5RMmmlDMw+TTKEM/Q43LhRx68e482/MtBVU9EDgcM693JPjxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo7bKkokZS0aiUh2PaKY4CFraa4F68aSkcATrONNrjO/M2VS8Si807OYuQEZhdznlGgjuf2A6LHnp9P5xYAPCkVsOxVcrpYRtqv1Oq7UDalVL3EZI8fGCxRhheag8N4fRjQJWKipIEr1HBxrNyVScyrYPN9PFIsJnZAR6xkakoApN12EnqNzowyRH0nzQo0W6veNlARKzQLPTGYh1W8vE//yeon2a27KwzjRLKTLQ34ikI5Q1gAacsmoFjNDCJXcZEV0TCSh2vSUNyV8/RT9T9pl2zFd3VaKjdKqjhycwhmUwIEraMANNKEFFO7hAZ7g2Zpaj9aL9bocXbNWOyfwA9bbJztsklE=</latexit>

(b) Node update

u0
<latexit sha1_base64="RuJ/WOWmv0qWsx0aAsZGj4qvbr4=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiDmNMxk0cwt4MVjBLPAZAg9nZ6kSc9Cd40YhnyGFw+KePVrvPk3dhZBRR8UPN6roqqenwiuwLI+jNza+sbmVn67sLO7t39QPDzqqDiVlLVpLGLZ84ligkesDRwE6yWSkdAXrOtPruZ+945JxePoFqYJ80IyinjAKQEtuX1g9+AHWTo7HxRLllm5aFTqFrbMulOrNmqaNCpO1XGwbVoLlNAKrUHxvT+MaRqyCKggSrm2lYCXEQmcCjYr9FPFEkInZMRcTSMSMuVli5Nn+EwrQxzEUlcEeKF+n8hIqNQ09HVnSGCsfntz8S/PTSFoeBmPkhRYRJeLglRgiPH8fzzkklEQU00IlVzfiumYSEJBp1TQIXx9iv8nnYppW6Z9Uys1y6s48ugEnaIystElaqJr1EJtRFGMHtATejbAeDRejNdla85YzRyjHzDePgEJTZGr</latexit><latexit sha1_base64="RuJ/WOWmv0qWsx0aAsZGj4qvbr4=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiDmNMxk0cwt4MVjBLPAZAg9nZ6kSc9Cd40YhnyGFw+KePVrvPk3dhZBRR8UPN6roqqenwiuwLI+jNza+sbmVn67sLO7t39QPDzqqDiVlLVpLGLZ84ligkesDRwE6yWSkdAXrOtPruZ+945JxePoFqYJ80IyinjAKQEtuX1g9+AHWTo7HxRLllm5aFTqFrbMulOrNmqaNCpO1XGwbVoLlNAKrUHxvT+MaRqyCKggSrm2lYCXEQmcCjYr9FPFEkInZMRcTSMSMuVli5Nn+EwrQxzEUlcEeKF+n8hIqNQ09HVnSGCsfntz8S/PTSFoeBmPkhRYRJeLglRgiPH8fzzkklEQU00IlVzfiumYSEJBp1TQIXx9iv8nnYppW6Z9Uys1y6s48ugEnaIystElaqJr1EJtRFGMHtATejbAeDRejNdla85YzRyjHzDePgEJTZGr</latexit><latexit sha1_base64="RuJ/WOWmv0qWsx0aAsZGj4qvbr4=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiDmNMxk0cwt4MVjBLPAZAg9nZ6kSc9Cd40YhnyGFw+KePVrvPk3dhZBRR8UPN6roqqenwiuwLI+jNza+sbmVn67sLO7t39QPDzqqDiVlLVpLGLZ84ligkesDRwE6yWSkdAXrOtPruZ+945JxePoFqYJ80IyinjAKQEtuX1g9+AHWTo7HxRLllm5aFTqFrbMulOrNmqaNCpO1XGwbVoLlNAKrUHxvT+MaRqyCKggSrm2lYCXEQmcCjYr9FPFEkInZMRcTSMSMuVli5Nn+EwrQxzEUlcEeKF+n8hIqNQ09HVnSGCsfntz8S/PTSFoeBmPkhRYRJeLglRgiPH8fzzkklEQU00IlVzfiumYSEJBp1TQIXx9iv8nnYppW6Z9Uys1y6s48ugEnaIystElaqJr1EJtRFGMHtATejbAeDRejNdla85YzRyjHzDePgEJTZGr</latexit><latexit sha1_base64="RuJ/WOWmv0qWsx0aAsZGj4qvbr4=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiDmNMxk0cwt4MVjBLPAZAg9nZ6kSc9Cd40YhnyGFw+KePVrvPk3dhZBRR8UPN6roqqenwiuwLI+jNza+sbmVn67sLO7t39QPDzqqDiVlLVpLGLZ84ligkesDRwE6yWSkdAXrOtPruZ+945JxePoFqYJ80IyinjAKQEtuX1g9+AHWTo7HxRLllm5aFTqFrbMulOrNmqaNCpO1XGwbVoLlNAKrUHxvT+MaRqyCKggSrm2lYCXEQmcCjYr9FPFEkInZMRcTSMSMuVli5Nn+EwrQxzEUlcEeKF+n8hIqNQ09HVnSGCsfntz8S/PTSFoeBmPkhRYRJeLglRgiPH8fzzkklEQU00IlVzfiumYSEJBp1TQIXx9iv8nnYppW6Z9Uys1y6s48ugEnaIystElaqJr1EJtRFGMHtATejbAeDRejNdla85YzRyjHzDePgEJTZGr</latexit>

e0k
<latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit><latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit><latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="ywz7v1q7Yrl4nBX/+QcnkaM0kGo=">AAAB6XicbZBLSwMxFIXv+Kz1Vd26CRbRVZlxo0vBjcsK9gHtUDLpnRqayYzJnWIZ+jvcuFDEP+TOf2P6WGjrgcDHOQn35kSZkpZ8/9tbW9/Y3Nou7ZR39/YPDitHe02b5kZgQ6QqNe2IW1RSY4MkKWxnBnkSKWxFw9tp3hqhsTLVDzTOMEz4QMtYCk7OCruEzxTFBU7Oe8NeperX/JnYKgQLqMJC9V7lq9tPRZ6gJqG4tZ3AzygsuCEpFE7K3dxixsWQD7DjUPMEbVjMlp6wM+f0WZwadzSxmfv7RcETa8dJ5G4mnB7tcjY1/8s6OcXXYSF1lhNqMR8U54pRyqYNsL40KEiNHXBhpNuViUduuCDXU9mVECx/eRWal7XArwX3PpTgBE7hAgK4ghu4gzo0QMATvMAbvHsj79X7mNe15i16O4Y/8j5/AKfckNQ=</latexit><latexit sha1_base64="ywz7v1q7Yrl4nBX/+QcnkaM0kGo=">AAAB6XicbZBLSwMxFIXv+Kz1Vd26CRbRVZlxo0vBjcsK9gHtUDLpnRqayYzJnWIZ+jvcuFDEP+TOf2P6WGjrgcDHOQn35kSZkpZ8/9tbW9/Y3Nou7ZR39/YPDitHe02b5kZgQ6QqNe2IW1RSY4MkKWxnBnkSKWxFw9tp3hqhsTLVDzTOMEz4QMtYCk7OCruEzxTFBU7Oe8NeperX/JnYKgQLqMJC9V7lq9tPRZ6gJqG4tZ3AzygsuCEpFE7K3dxixsWQD7DjUPMEbVjMlp6wM+f0WZwadzSxmfv7RcETa8dJ5G4mnB7tcjY1/8s6OcXXYSF1lhNqMR8U54pRyqYNsL40KEiNHXBhpNuViUduuCDXU9mVECx/eRWal7XArwX3PpTgBE7hAgK4ghu4gzo0QMATvMAbvHsj79X7mNe15i16O4Y/8j5/AKfckNQ=</latexit><latexit sha1_base64="Wxt2EGaSkqmyg6rX9KQvpR9rldE=">AAAB9HicbVA9TwJBEN3DL8Qv1NJmIzFSkTsbLUlsLDGRjwQuZG+Zgw17e+fuHJFc+B02Fhpj64+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TJxqDk0ey1h3AmZACgVNFCihk2hgUSChHYxv5357AtqIWD3gNAE/YkMlQsEZWsnvITxhEGYwu+yP++WKW3MXoOvEy0mF5Gj0y1+9QczTCBRyyYzpem6CfsY0Ci5hVuqlBhLGx2wIXUsVi8D42eLoGb2wyoCGsbalkC7U3xMZi4yZRoHtjBiOzKo3F//zuimGN34mVJIiKL5cFKaSYkznCdCB0MBRTi1hXAt7K+UjphlHm1PJhuCtvrxOWlc1z615926lXs3jKJIzck6qxCPXpE7uSIM0CSeP5Jm8kjdn4rw4787HsrXg5DOn5A+czx/qpZIV</latexit><latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit><latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit><latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit><latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit><latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit><latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit>v0
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(c) Global update

Figure 3: Updates in a GN block. Blue indicates the element that is being updated, and black
indicates other elements which are involved in the update (note that the pre-update value of the
blue element is also used in the update). See Equation 1 for details on the notation.

3. φv is applied to each node i, to compute an updated node attribute, v′i. In our running
example, φv may compute something analogous to the updated position, velocity, and kinetic
energy of each ball. The set of resulting per-node outputs is, V ′ = {v′i}i=1:Nv .

4. ρe→u is applied to E′, and aggregates all edge updates, into ē′, which will then be used in the
next step’s global update. In our running example, ρe→u may compute the summed forces
(which should be zero, in this case, due to Newton’s third law) and the springs’ potential
energies.

5. ρv→u is applied to V ′, and aggregates all node updates, into v̄′, which will then be used in
the next step’s global update. In our running example, ρv→u might compute the total kinetic
energy of the system.

6. φu is applied once per graph, and computes an update for the global attribute, u′. In our
running example, φu might compute something analogous to the net forces and total energy
of the physical system.

Note, though we assume this sequence of steps here, the order is not strictly enforced: it is possible
to reverse the update functions to proceed from global, to per-node, to per-edge updates, for example.
Kearnes et al. (2016) computes edge updates from nodes in a similar manner.

3.2.4 Relational inductive biases in graph networks

Our GN framework imposes several strong relational inductive biases when used as components in
a learning process. First, graphs can express arbitrary relationships among entities, which means
the GN’s input determines how representations interact and are isolated, rather than those choices
being determined by the fixed architecture. For example, the assumption that two entities have a
relationship—and thus should interact—is expressed by an edge between the entities’ corresponding
nodes. Similarly, the absence of an edge expresses the assumption that the nodes have no relationship
and should not influence each other directly.

Second, graphs represent entities and their relations as sets, which are invariant to permutations.
This means GNs are invariant to the order of these elements6, which is often desirable. For example,
the objects in a scene do not have a natural ordering (see Sec. 2.2).

Third, a GN’s per-edge and per-node functions are reused across all edges and nodes, respectively.
This means GNs automatically support a form of combinatorial generalization (see Section 5.1):
because graphs are composed of edges, nodes, and global features, a single GN can operate on
graphs of different sizes (numbers of edges and nodes) and shapes (edge connectivity).

6Note, an ordering can be imposed by encoding the indices in the node or edge attributes, or via the edges
themselves (e.g. by encoding a chain or partial ordering).
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Figure 2.13: Graph Neural Network operations the elements colored black are
involved in the update with the blue element being updated Figure
from (Battaglia et al. 2018a)

Algorithm 2.2 Update operations of a GNN
for k ∈ {1...Ne} do

e′k ← φe (ek, vrk , vsk , u)
end for
for i ∈ {1...Nn} do

let E′i =
{(

e′k, rk, sk
)}

rk=i,k=1:Ne

e′i ← ρe→v (E′i)
v′i ← φv (e′i , vi, u)

end for
let V′ = {v′}i=1:Nv

let E′ =
{(

e′k, rk, sk
)}

k=1:Ne

e′ ← ρe→u (E′)
v′ ← ρv→u (V′)
u′ ← φu (e′, v′, u)
return (E′, V′,u′)

2.3.5 Optimization and back-propagation

Now that the key building blocks of neural network architectures have been
defined, it is important to understand how to learn the parameters of a predictive
model. In order to make iterative updates to the model parameters we need to
calculate gradients, that is for each parameter in the network we must calculate
how changing that parameter will affect the model’s predictions for a batch of
data examples.

This involves several key aspects. The first is that of automatic differentiation,
for every fundamental operation applied in a neural network, the analytic first-
order derivative is known and defined, see examples in equations (2.24) and
(2.25).

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI038/these.pdf 
© [E. Beeching], [2022], INSA Lyon, tous droits réservés



2.3 deep learning 29

σ(x) =
1

1 + e−x ,

σ′(x) =
∂σ(x)

∂x
= σ(x)(1− σ(x)).

(2.24)

ReLU(x) = max(0, x),

ReLU′(x) =
{

0 if x ≤ 0
1 if x > 0

(2.25)

Some functions are non-continuous such as the ReLU operation at x = 0, although
in practical terms this does not cause any real issues. For a more detailed study
of automatic differentiation in machine learning (Baydin et al. 2018) provides a
thorough overview. Each step of computation is stored in a directed graph, where
during the forward pass through the network the sequence of operations and
their intermediate outputs are stored. This is best demonstrated with an example,
consider the MLP from section 2.3.1, preforming a linear regression task on a
dataset of vectors X and their corresponding labels y.

ŷ = f (x;W ) =W1 tanh(W0x
T ) (2.26)

During the forward pass, the outputs of each intermediate operation, or layer
activations must be stored. Consider the forward pass of an input example x,
detailed in equation (2.27).

a =W0x
T ,

o = tanha,
ŷ =W1o

(2.27)

We then compute the loss, in this example we will use a mean squared error
loss function L(ŷ, y) = (ŷ− y)2. We then wish to calculate the partial derivatives
of this loss with respect to each parameter in the neural network, for example

∂L
∂W0

. This is achieved for performing repeated applications of the the chain rule
∂x
∂z = ∂x

∂y
∂y
∂z . Performing the backwards pass over the previous operations results in

the following partial derivatives:

∂L
∂ŷ

= 2(ŷ− y) (2.28)

∂L
∂W1

=
∂L
∂ŷ

∂ŷ
∂W1

= 2(ŷ− y)o (2.29)

∂L
∂o

=
∂L
∂ŷ

∂ŷ
∂o

= 2(ŷ− y)W1 (2.30)

∂L
∂W0

=
∂L
∂ŷ

∂ŷ
∂o

∂o

∂a

∂a

∂W0
= 2(ŷ− y)o(1− tanh(a)2)xT (2.31)
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The operations and derivatives above are the analytic derivatives for the partic-
ular network architecture. In modern deep learning frameworks the derivatives
are computed automatically, intermediate partial derivatives are stored in order
to reduce the computational complexity of repeated calculations.

Once the partial derivatives have been calculated, the next step is to perform
SGD, the act of stepping in the direction of the gradient of the loss function, with
the objective of minimizing it. Practically speaking, SGD is not performed on
individual samples but on small subsets, batches, of the training examples. This
is for two reasons, to have a less noisy estimate of the true gradient and because
larger networks perform the optimization step of one or more Graphics Processing
Unit (GPU)s and parallelize the forward and backward passes across the many
samples in the batch.

Typically SGD is performed with an optimization algorithm, we will focus here
on 1st order optimizers rather than second order-methods such as Conjugate
gradient (Hestenes et al. 1952), BFGS, Levenberg–Marquardt (Moré 1978) and
Gauss-Newton, as they do no scale well to Deep Networks that contain millions
of parameters.

As Deep Learning research has expanded in the last decade, so have the number
of optimizer available to the community. Example include SGD, Adam (Kingma
et al. 2017), RMSprop (Hinton et al. 2012a), Adadelta (Zeiler 2012), AdamW
(Loshchilov et al. 2019), NAdam (Dozat 2016), RAdam (Liu et al. 2021), to name a
few.

We explain here SGD and Adam, as these optimizers were used frequently
during the thesis. “Vanilla" SGD performs an update to the networks parameters
W.

W ←W + η
∂L

∂W
(2.32)

Where η is a learning rate parameter, which controls the step size; too small and
little progress is made leading to slow convergence, too large and the optimizer is
likely to fluctuate over or diverge from a (local) optimum.

Momentum (Qian 1999) can dampen oscillations in the direction of the gradient
and accelerate SGD, this is achieved by computing a running average of the
gradients of from the previous batches and using this to update the parameters of
the network:

vt = γvt−1 + η
∂L

∂W
W ←W − vt

(2.33)

Where vt is a running average of the gradients, η is the learning rate and γ controls
the contribution gradients from previous updates. A further extension to classic
momentum is that of Nesterov momentum (Nesterov 1983). Both RMSprop and

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI038/these.pdf 
© [E. Beeching], [2022], INSA Lyon, tous droits réservés



2.4 supervised deep learning 31

Adam aim to perform an adaptive learning rate control for each model parameter
independently:

vt = γvt−1 + (1− γ)

(
∂L

∂W

)2

W ←W − η√
vt + ε

∂L
∂W

(2.34)

Where vt is a running average of the square of gradients, η is the learning rate,
γ (typically 0.9) controls the contribution gradients from previous updates, and
epsilon (typically 1e-8) is used to stabilize the devision operation. Note that
although Adam has quickly become the defacto choice of optimizer in Deep
Learning problems, there are issues related to its convergence guarantees, it has
been demonstrated to fail to converge on some toy problems (Reddi et al. 2018).
For PyTorch users, enabling the “amsgrad” option will use the corrected algorithm.
For a deeper dive into optimization algorithms for Deep Neural Networks we
refer the reader to (Ruder 2017).

2.4 Supervised Deep Learning

While the previous section has discussed the building blocks that are used in Deep
Learning, this section introduces some applications and large-scale architectures
that are used in both research and industrial settings.

The field of Deep Learning is vast and it would be impossible to cover all works
in the field. Deep Learning approaches have been applied to a range of problems,
with the most common application is that of image recognition where is have been
applied to handwritten digit recognition (Lecun et al. 1998) and the ImageNet
classification task (Krizhevsky et al. 2012; He et al. 2015; Szegedy et al. 2016; Liu
et al. 2018; Pham et al. 2021; Dai et al. 2021) discussed in section 2.3.2. The second
application of that of semantic segmentation, where a CNN performs pixel-wise
classification, an example is shown in Figure 2.14. Semantic segmentation has
applications in labeling of photos, autonomous vehicles (Chen et al. 2018b; Chen
et al. 2018a; Liu et al. 2019; Choi et al. 2020), medical image diagnostics (Novikov
et al. 2018; Jha et al. 2020; Zhou et al. 2019; Zhou et al. 2020). Applications of
semantic segmentation also raise some ethical concerns, in particular when these
technologies are used for crowd monitoring and surveillance (Sreenu et al. 2019),
causing the author of the well known “You Only Look Once" (Redmon et al. 2018)
network architecture to discontinue his research in this direction.

Beyond image-based applications, Deep Learning has changed the face of NLP
for Machine Translation (Devlin et al. 2018; Liu et al. 2020) , sentiment analysis
(Thongtan et al. 2019; Sun et al. 2019; Howard et al. 2018) and question answering
(Raffel et al. 2019; Garg et al. 2020; Wu et al. 2020). There are many multi-modal
applications of Deep Learning, such as VQA (Yang et al. 2019; Zaheer et al. 2020;
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Figure 2.14: An example of semantic segmentation performing pixelwise clas-
sification of two classes “cat" and “dog". Figure from (Chen et al.
2018b)

Garg et al. 2020), image captioning; where the network must output a string of
text that describes an input image (Gu et al. 2017). Deep Learning has also been
applied to Speech Recognition (Park et al. 2020; Ravanelli et al. 2018), Speech
Synthesis (Shen et al. 2018) and Dialogue Generation (Bahdanau et al. 2014; Wolf
et al. 2019b).

2.5 Deep Reinforcement Learning

This section provides an overview the required knowledge related to the Deep
RL algorithms that were implemented and applied during this thesis. As the
environment’s state space becomes ever larger, we are faced with two challenges:
the number of finite states exceeds the available memory and there are so many
states it would take infinitely long to explore them all. Ideally in this instance,
we would expect that for two similar states, the actions selected by our would be
similar. We require a generalization between similar states. Non-linear function
approximation, with a Neural Network (NN), resolves the challenge of general-
ization between similar states, removes the requirement to hold a lookup table
in memory for each state and allows us to model complex function mappings
between the input states and output actions. The type of NN architecture depends
on the problem at hand, in this thesis we deal with states or observations (see
POMDP section 2.5.1) that are typically a multi-modal combination of image and
vector data. Network architectures in Deep Reinforcement Learning are typically
far smaller than those applied in supervised learning, this is due to a noisy, high
variance estimates of the “true” gradient during optimization process, discussed
further in 2.7. An example network architecture for image-based states from the
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difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).
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Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.
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Figure 2.15: The AtartNet architecture, with two convolutional layers that process
84x84 gray-scale images. The architecture is relatively small compared
to applications of Deep Learning in a supervised setting. Figure from
(Mnih et al. 2015c).

Atari-57 benchmark is shown in 2.15, the network architecture is comparable in
size to the work of (Lecun et al. 1998) but has been used to learn a policy that
plays Atari games (Mnih et al. 2015c).

Certain environments are not considered to be Markov and do not provide the
entire state to the agent at each time-step. The majority of environments that were
used during this thesis have such a property and are considered to be POMDP.
Note, in the section, we refer to the parameters of a neural network as θ rather
than W to remain consistent with the Deep RL literature.

2.5.1 Partially Observable Markov Decision Processes

The POMDP (Åström 1965) is an extension of an MDP in a partially observable
domain, where the agent, instead of receiving the state s to perform decision
making, is provided by environment with an observation o. There is a function
unknown to the agent o = O(s), which maps the states to the observations.

The formal definition of a POMDP a sequential decision making problem, is
defined as a tuple 〈S ,A,P ,R,O, γ〉 where:

• S : a finite set of states

• A: a finite set of actions
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Figure 2.16: Perspective projection 3D to a 2D plan projection. Left: an example
3D scene with a monocular camera placed at the bottom right corner.
Right: a planar projection of the 3D scene geometry onto a 2D virtual
monocular camera. Figure created the Godot Game Engine (Linietsky
et al. 2014).

• P : a state transition probability matrix, P(s′|s, a)

• R: a reward function

• Ω: a set of observations

• O: a set of conditional observation probabilities

• γ: a discount factor ∈ [0, 1]

Because the agent does not directly observe the state of the environment, the
optimal decision to take at time-step may require information from previous time-
steps. By incorporating information from previous time-steps into its decision
making process, the agent can be more confident about its belief about the true
state of the environment. As an example, consider an agent in a maze observing
the world through a monocular camera, shown Figure in 2.16. In this example
we can consider the observation to be the pixels of the image captured by the
monocular camera and the state to be the configuration on the environment. The
function O(s) is the projection of 3D scene to the 2D camera coordinates. As an
agent moves around this scene, it could potentially expand its knowledge about
the actual state of the environment. However, in order to do this the agent requires
a form of memory to store pertinent information about the environment. Typically
Deep RL agents use an RNN such as an LSTM (Hochreiter et al. 1997a) or a GRU
(Chung et al. 2014) to learning to store information about the environment from
one time-step to the next, these were introduced in section 2.3.3. We demonstrate
how an RNN can be incorporated in to a agent’s network architecture in Figure
2.18.
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Figure 2.17: Overview of a recurrent agent architecture, the agent uses a recur-
rent neural network to learn to store information about the envi-
ronment. The output of the RNN is used to parameterize an action
distribution π(ot) and value function V(ot).

2.5.2 Algorithms

We will now introduce a taxonomy of RL algorithms. Broadly, Deep RL algorithms
fit into two categories, model-free and model-based. In model-free RL we learn
a policy in the absence of a model of the environment. In model-based RL we
are either provided with a model of the environment which can be used for
planning to aid us in the making of decisions, or we jointly learn a model of the
environment and a policy that uses the learned model to improve its decision
making process. In this thesis we have focused on model-free algorithms and
their applications. Model-free learning algorithms can further be split into two
categories, on-policy algorithms and off-policy algorithms, although there are
recent advances that combine the two approaches in a judicious way. The key
difference between on-policy and off-policy algorithm is that on-policy algorithms
require experience that has been generated with the policy that is currently being
optimized, whereas off-policy algorithms can use experience from any policy such
as, for example, ε-greedy exploration. The requirement for on-policy algorithms
to make updates with experience from their current policy typically makes them
less sample efficient than off-policy algorithms, but comes with other advantages
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Figure 2.18: A taxonomy of RL algorithms, shown are a subset of modern Deep
RL algorithms. Figure from (Achiam 2018).

including more algorithmic stability and suitability for the learning of recurrent
policies.

Before we explain in detail a number a key algorithms, we will first provide an
overview of a few key concepts. Discounted returns G, state-value functions V(s)
and advantage functions A(s, a). In an on-policy setting discounted returns are
calculated independently for each trajectory τ of experience of length T, sampled
for a given policy π(s) in the environment. The discounted return Gt is a sum of
all the reward received after a particular time-step t, discounted by how far into
the future they were received with a discount factor γ:

Gt =
T

∑
k=t

γk−tr(sk, ak). (2.35)

We can now assign a discount return to each state in a trajectory. In many on-
policy methods, one of the objectives is to approximate the discounted return for
a given policy. The value function Vπ(s) aims to model the expected discounted
return for each state, for a given policy π(s). During the training of an Deep RL
agent a finite number of samples is used, instead of computing the expectation
explicitly. The advantage function provides us with an estimate of the relative
improvement an action gives in particular state when compared the other actions
and is as follows:

Aπ(s, a) = Qπ(s, a)−Vπ(s). (2.36)

Often in an on-policy setting, we do not approximate both the Q function and the
Value function. So the advantage is estimated, trajectory by trajectory, by taking
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the difference between the discounted return for a state and the estimated value
of that state.

2.5.3 On-policy algorithms

We now describe three on-policy Deep RL algorithms: REINFORCE (Williams
1992b), Advantage Actor Critic (Mnih et al. 2016a) and Proximal Policy Optimiza-
tion (Schulman et al. 2017a)

2.5.3.1 REINFORCE

The REINFORCE algorithm (Williams 1992b) learns a parameterized policy distri-
bution π(st) and can operate in environments with either continuous or discrete
action spaces. The algorithm samples a trajectory from the current policy and
then performs an update based on the loss function defined as:

LREINFORCE =
T

∑
t=0

Gt log π (at | st) . (2.37)

A downside of the algorithm is that there can be high variance in the sampled
trajectories, in the limit the quantity of data should enable to model to converge.
However, using non-linear function approximation in an RL setting is notoriously
unstable (Henderson et al. 2018). In order to reduce this variance, the authors
of REINFORCE recommend using a baseline variable b to aim to normalize the
returns:

LREINFORCE =
T

∑
t=0

(Gt − b) log π (at | st) . (2.38)

The value of b could be a (running) average of the discounted returns, or in the
case of actor-critic methods 2.5.3.2, be an estimate of a states’ value.

2.5.3.2 Advantage Actor Critic

The Advantage Actor Critic algorithm (Mnih et al. 2016b) involves the learning of
two parametric functions. A policy π(s; θ), the actor, and a value function V(s; θ),
the critic. Like REINFORCE (Williams 1992b) this algorithm is applicable in
environments with discrete and continuous action spaces. The algorithm operates
on batches of trajectories of experience sampled from the current iteration of
the policy. To control the exploration-exploitation trade-off, the algorithm often
includes an entropy bonus as part of its loss function. The algorithm performs
joint optimization of three objective functions: A policy loss Lπ (2.39), a value
function loss LV (2.40) and an entropy loss LH (2.41):
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Lπ = ∑
τ∼π

T

∑
t=0

log π(at|st; θ)Aπ(st, at; θ). (2.39)

LV = ∑
τ∼π

T

∑
t=0

(Vπ(st; θ)− Gt)
2. (2.40)

LH = − ∑
τ∼π

T

∑
t=0

n

∑
i=1

π(ai|st; θ) log π(ai|st; θ). (2.41)

The three losses are combined into one loss function Lactor−critic, with two tunable
weights λV and λH:

Lactor−critic = Lπ + λVLV + λHLH (2.42)

The Advantage Actor Critic algorithm is somewhat sample inefficient when
compared with its off-policy equivalents, but as it is on-policy it cannot suffer
from representational drift, which we discuss in section 2.5.4.3.

2.5.3.3 Proximal Policy Optimization

Proximal Policy Optimization (PPO) (Schulman et al. 2017a) is an on-policy algo-
rithm that extends Advantage Actor Critic (A2C) with the aim of improving the
sample efficiency. In A2C the algorithm operates on batches of episodes sampled
from parallel agents interacting with parallel RL environments. For each batch
the A2C algorithm performs one gradient step before discarding the batch and
interacting with the simulator using the updated policy. PPO performs several
updates to its policy with the same batch of episodes, improving the sample
efficiency. There are, however, several potential downsides to this approach. After
the first update of the policy the next batch of data is no longer on-policy, which
can cause representation drift and updates that lead to a reduction in performance.
To resolve this issue, the PPO algorithm defines a proximal zone, which restricts
the size of updates that can be made to the policy. Once a sample of transition
is outside of the proximal zone, its contributions to the gradients of the update
are clipped to zero. PPO is inspired by a similar algorithm, Trust-Region Policy
Optimization (TRPO) (Schulman et al. 2015), but is far simpler to implement and
achieves comparable empirical performance. PPO enforces this proximal zone by
modifying the actor-critic policy loss defined in (2.39) to the the following:

L (s, a; θk, θ) = min
(

πθ(a | s)
πθk(a | s)Aπθk (s, a), clip

(
πθ(a | s)
πθk(a | s) , 1− ε, 1 + ε

)
Aπθk

(s,a)
)

(2.43)
This loss function limits the maximum change in the ratio of probabilities under
the current policy and the old policy to be within a certain fraction controlled a
parameter ε, typically 10-20%.
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3 Clipped Surrogate Objective

Let rt(θ) denote the probability ratio rt(θ) = πθ(at | st)
πθold (at | st)

, so r(θold) = 1. TRPO maximizes a

“surrogate” objective

LCPI(θ) = Êt
[
πθ(at | st)
πθold(at | st)

Ât

]
= Êt

[
rt(θ)Ât

]
. (6)

The superscript CPI refers to conservative policy iteration [KL02], where this objective was pro-
posed. Without a constraint, maximization of LCPI would lead to an excessively large policy
update; hence, we now consider how to modify the objective, to penalize changes to the policy that
move rt(θ) away from 1.

The main objective we propose is the following:

LCLIP (θ) = Êt
[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
(7)

where epsilon is a hyperparameter, say, ε = 0.2. The motivation for this objective is as follows. The
first term inside the min is LCPI . The second term, clip(rt(θ), 1−ε, 1+ε)Ât, modifies the surrogate
objective by clipping the probability ratio, which removes the incentive for moving rt outside of the
interval [1− ε, 1 + ε]. Finally, we take the minimum of the clipped and unclipped objective, so the
final objective is a lower bound (i.e., a pessimistic bound) on the unclipped objective. With this
scheme, we only ignore the change in probability ratio when it would make the objective improve,
and we include it when it makes the objective worse. Note that LCLIP (θ) = LCPI(θ) to first order
around θold (i.e., where r = 1), however, they become different as θ moves away from θold. Figure 1
plots a single term (i.e., a single t) in LCLIP ; note that the probability ratio r is clipped at 1 − ε
or 1 + ε depending on whether the advantage is positive or negative.

r

LCLIP

0 1 1 + ε

A > 0

r

LCLIP

0 11− ε

A < 0

Figure 1: Plots showing one term (i.e., a single timestep) of the surrogate function LCLIP as a function of
the probability ratio r, for positive advantages (left) and negative advantages (right). The red circle on each
plot shows the starting point for the optimization, i.e., r = 1. Note that LCLIP sums many of these terms.

Figure 2 provides another source of intuition about the surrogate objective LCLIP . It shows how
several objectives vary as we interpolate along the policy update direction, obtained by proximal
policy optimization (the algorithm we will introduce shortly) on a continuous control problem. We
can see that LCLIP is a lower bound on LCPI , with a penalty for having too large of a policy
update.

3

Figure 2.19: The PPO clipping objective shown for positive advantages (left) and
negative advantages (right). The clipping parameter ε restricts the
ratio of new to old action probabilities to be within 1− ε to 1 + ε.
Figure from (Schulman et al. 2017a).

This equation is more clear when it is split into two cases, when the advantage
is positive and when the advantage is negative, shown in Figure 2.19. When the
advantage is negative, the objective is clipped on transitions where the ratio of
action probabilities is below 1− ε. When it is positive the inverse is true and the
objective function is clipped when the ratio it is above 1 + ε. This restricts the
updates such that they remain in a zone around the old policy parameters, often
the clipping parameter ε is decayed to zero during the training in order to avoid
large shifts in the policy when it is near to convergence.

2.5.4 O�-policy algorithms

2.5.4.1 Deep Q-Learning

Deep Q-Learning (DQN) (Mnih et al. 2015c), extend the tabular Q-Learning algo-
rithm to settings that require function approximation, typically due a the vast
number of possible states the agent can encounter. The standard DQN algorithm
applies to settings where the action space of the agent is discrete, the vanilla
algorithm is not directly applicable in environments where the action space is
continuous. As is the case of tabular Q-Learning, the objective in DQN is learning
a function that returns the expected return of a state-action pair, Q(s, a). In this
setting, the function Q(s, a) is represented by a Deep NN, which can be an MLP or
a CNN depending on the environments state representation. Performing optimiza-
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tion of a Deep NN in an on-line setting with an ever changing data distribution
poses several challenges, which can lead to catastrophic forgetting and general
instability during training. One of the key ways to rectify these issues is that of a
large experience replay buffer, which typically holds one million state transitions or
more. During optimization, transitions are uniformly sampled from the replay
buffer, such that a diverse range of experience is used to perform parameter
updates to the network. The loss function in the DQN setting is based on the
update rule in the tabular setting:.

L(θ) =
[
r + γ max

a
Q(st+1, a; θ)−Q(st, at; θ)

]2
. (2.44)

As with tabular Q-Learning, the exploration strategy is ε-greedy, with the proba-
bility annealed over time during training. A downside of DQN methods, is that in
general they are only applicable in environments with a discrete action space, an
issue that is addressed with the Soft Actor-Critic algorithm (Haarnoja et al. 2018a)
introduced in section 2.5.4.4. Nevertheless the DQN algorithm was the first Deep
RL approach that reached human level performance on the Atari-57 benchmark
and convinced researchers of the applicability of Deep RL in domains with vast
state spaces.

Algorithm 2.3 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do

Initialize sequence s1 = {x1} and preprocessed sequenced φ1 = φ (s1)
for t = 1, T do

With probability ε select a random action at
otherwise select at = maxa Q∗ (φ (st) , a; θ)
Execute action at in the simulator and observe the reward rt and state

observation xt+1
Set st+1 = st , at,xt+1 and preprocess φt+1 = φ (st+1)
Store transition (φt , at, rt,φt+1) in D
Sample random mini-batch of transitions

(
φj, aj, rj,φj+1

)
from D

Set yj =

{
rj for terminal φj+1
rj + γ maxa′ Q

(
φj+1, a′; θ

)
for non-terminal φj+1

Perform a gradient descent step on
(
yj −Q

(
φj, aj; θ

))2

end for
end for
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2.5.4.2 Extensions: Rainbow

The success of Deep Q-Learning in Atari games has spurred numerous follow-up
works, modifications and improvements to the underlying algorithm, shown in 2.3.
The Rainbow paper (Hessel et al. 2018a) sought to compare these improvements
and show how complementary they are when combined together. The extensions
that are compared and ablated are summarized as follows:

Double Q-Learning The standard Q-Learning equation is affected by overesti-
mation bias, where the fact that taking the max of the Q-function (that we are
currently estimating) leads to over optimistic estimates of the discounted future
return of a particular action. In double Q-learning (Hasselt 2010; Van Hasselt et al.
2016), the max is performed on a separate target network, to decouple selection
from evaluation.

Prioritized replay The standard DQN algorithm (Mnih et al. 2015c) samples
from the replay buffer uniformly. However, some transitions contain more to learn
that others, so we would like to adjust the distribution in order to sample these
more frequently. Prioritized experience replay (Schaul et al. 2015) adjusts the
probability distribution such that transitions with higher Temporal-Difference (TD)
error are sampled with a higher probability, pt, calculated with:

pt ∝
∣∣∣∣Rt+1 + γt+1 max

a′
qθ̄

(
st+1, a′

)
− qθ (st , At)

∣∣∣∣ω . (2.45)

Where w is a hyper-parameter that controls the shape of the distribution. In
order to encourage sampling of new experience, when transitions are first added
to the replay buffer they are assigned this maximum priority.

Dueling networks Are a modified NN architecture by (Wang et al. 2016b) with
two output heads that perform value and advantage predictions. The authors
demonstrate that by factoring out the Q-value estimates into predictions of values
and advantages, greater performance can be achieves compared to the standard
DQN architecture.

Multi-step learning Multi-step learning extends the reward for each state to a
truncated n-step return (Sutton 1988). Which, with a suitable truncation size has
been shown to achieve faster learning. The truncated n-step return for a state st
is calculated as follows:

r(n)t ≡
n−1

∑
k=0

γ
(k)
t rt+k+1. (2.46)

The authors (Hessel et al. 2018b) found 3 steps to be a suitable size to perform
multi-step learning.
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Distributional RL In distributional RL (Bellemare et al. 2017), instead of esti-
mating the Q-value of each action for a given state st, the authors estimate a
distribution over possible Q-values, which is represented as a neural network.
The advantage of this approach is that if the Q-value distribution is bi-modal, the
approach can model this distribution as part of the network outputs, rather that
the mean of the distribution in the vanilla case.

Noisy Nets (Fortunato et al. 2017) aim to rectify some of the limitations of
ε-greedy exploration in high-exploration, sparse-reward settings such as the Atari
game, Montezuma’s Revenge. Noisy nets are implemented by replacing linear
layers in the NN with a noisy equivalent:

y = (b+ Wx) +
(
bnoisy � εb +

(
Wnoisy � εw)x) . (2.47)

Where εb and εw are random variables. As the network trains, it will learn to
ignore the noisy random variables, by reducing bnoisy and Wnoisy to zero. But
initially this noise allows for more random exploration, allowing to agent to
explore different parts of the state space and potentially discover new sources of
reward.

The studied performed by the authors of Rainbow performs a detailed ablation
study of these methods, a snapshot of which is shown in Figure 2.20.

2.5.4.3 Recurrent Q-Learning R2D2

Recurrent Replay Distributed DQN (R2D2) (Kapturowski et al. 2018) incorporates
a recurrent memory cell in an off-policy setting. The challenge of using memory
in an off-policy setting is that the recurrent hidden state of the agent must be
stored in the replay buffer. When samples are taken from the replay buffer, there
will be a mismatch between the stored hidden state activation and the activation
that would have been calculated if the current parameters of the neural network
were used to calculate the hidden state. This principle is called “representation
drift”. In R2D2, the authors perform a thorough analysis of the issue, comparing
three options: storing the state, zeroing the state and burning in the state; where
a fixed number of time-steps are used to estimate the hidden state which are not
used for computing gradients. An example of the analysis is shown in Figure
2.21, which demonstrates the necessity to burn-in from a stored hidden state,
particular in environments that rely on exploration. At the time of publication,
R2D2 was shown to outperform state of the art in the Atari-57 benchmark and
the 30 tasks from DeepMind Lab. In addition the authors introduce a technique
to estimate the representational drift of a stored state, by comparing the start
and end states from an episode stored in the replay buffer to that of a burned-in
zeroed hidden state. The Q-discrepancy can be estimated by comparing the two
estimated Q-values. Burning-in the hidden state for up to 40 time-steps comes
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Rainbow: Combining Improvements
in Deep Reinforcement Learning

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul,
Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot,

Mohammad Azar, David Silver
DeepMind

Abstract

The deep reinforcement learning community has made sev-
eral independent improvements to the DQN algorithm. How-
ever, it is unclear which of these extensions are complemen-
tary and can be fruitfully combined. This paper examines
six extensions to the DQN algorithm and empirically studies
their combination. Our experiments show that the combina-
tion provides state-of-the-art performance on the Atari 2600
benchmark, both in terms of data efficiency and final perfor-
mance. We also provide results from a detailed ablation study
that shows the contribution of each component to overall per-
formance.

Introduction
The many recent successes in scaling reinforcement learn-
ing (RL) to complex sequential decision-making problems
were kick-started by the Deep Q-Networks algorithm (DQN;
Mnih et al. 2013, 2015). Its combination of Q-learning with
convolutional neural networks and experience replay en-
abled it to learn, from raw pixels, how to play many Atari
games at human-level performance. Since then, many exten-
sions have been proposed that enhance its speed or stability.

Double DQN (DDQN; van Hasselt, Guez, and Silver
2016) addresses an overestimation bias of Q-learning (van
Hasselt 2010), by decoupling selection and evaluation of
the bootstrap action. Prioritized experience replay (Schaul
et al. 2015) improves data efficiency, by replaying more of-
ten transitions from which there is more to learn. The du-
eling network architecture (Wang et al. 2016) helps to gen-
eralize across actions by separately representing state val-
ues and action advantages. Learning from multi-step boot-
strap targets (Sutton 1988; Sutton and Barto 1998), as used
in A3C (Mnih et al. 2016), shifts the bias-variance trade-
off and helps to propagate newly observed rewards faster to
earlier visited states. Distributional Q-learning (Bellemare,
Dabney, and Munos 2017) learns a categorical distribution
of discounted returns, instead of estimating the mean. Noisy
DQN (Fortunato et al. 2017) uses stochastic network layers
for exploration. This list is, of course, far from exhaustive.

Each of these algorithms enables substantial performance
improvements in isolation. Since they address radically dif-
ferent issues, and since they build on a shared framework,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Median human-normalized performance across 57
Atari games. We compare Rainbow (rainbow-colored) to
DQN and six published baselines. We match DQN’s best
performance after 7M frames, surpass any baseline in 44M
frames, reaching substantially improved final performance.
Curves are smoothed with a moving average of 5 points.

they could plausibly be combined. In some cases this has
been done: Prioritized DDQN and Dueling DDQN both use
double Q-learning, and Dueling DDQN was also combined
with prioritized replay. In this paper we propose to study an
agent that combines all the aforementioned ingredients. We
show how these different ideas can be integrated, and that
they are indeed complementary. In fact, their combination
results in new state-of-the-art results on the benchmark suite
of 57 Atari 2600 games from the Arcade Learning Environ-
ment (Bellemare et al. 2013), both in terms of data efficiency
and of final performance. Finally, we show results from ab-
lation studies to help understand the contributions of the in-
dividual components.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)
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Figure 3: Median human-normalized performance across 57
Atari games, as a function of time. We compare our inte-
grated agent (rainbow-colored) to DQN (gray) and to six
different ablations (dashed lines). Curves are smoothed with
a moving average over 10 points.

Learning speed. As in the original DQN setup, we ran
each agent on a single GPU. The 7M frames required to
match DQN’s final performance correspond to less than 10
hours of wall-clock time. A full run of 200M frames cor-
responds to approximately 10 days, and this varies by less
than 20% between all of the discussed variants. The litera-
ture contains many alternative training setups that improve
performance as a function of wall-clock time by exploiting
parallelism, e.g., Nair et al. (2015), Salimans et al. (2017),
and Mnih et al. (2016). Properly relating the performance
across such very different hardware/compute resources is
non-trivial, so we focused exclusively on algorithmic vari-
ations, allowing apples-to-apples comparisons. While we
consider them to be important and complementary, we leave
questions of scalability and parallelism to future work.

Ablation studies. Since Rainbow integrates several differ-
ent ideas into a single agent, we conducted additional exper-
iments to understand the contribution of the various compo-
nents, in the context of this specific combination.

First, we performed an ablation study. In each ablation,
we removed a single component from the full Rainbow com-
bination, and trained the resulting agent on all Atari games.
Figure 3 compares median normalized scores of Rainbow to
the six ablated variants. Figure 2 (bottom row) shows a more
detailed breakdown of how these ablations perform relative
to different thresholds of human normalized performance,
and Figure 4 shows the gain or loss from each ablation for
every game, averaged over the full learning run.

Prioritized replay and multi-step learning were the two
most crucial components of Rainbow, in that removing ei-
ther component caused a large drop in median performance.
Unsurprisingly, the removal of either of these hurt early per-
formance. Perhaps more surprisingly, the removal of multi-
step learning also hurt final performance. Zooming in on in-
dividual games (Figure 4), we see both components helped
almost uniformly across games (Rainbow performed better
than either ablation in 53 games out of 57).

Distributional Q-learning ranked immediately below the
previous techniques for relevance to the agent’s perfor-
mance. Notably, in early learning no difference is appar-
ent, as shown in Figure 3, where for the first 40 million
frames the distributional-ablation performed as well as the
full agent. However, without distributions, the performance
of the agent then started lagging behind. When the results are
separated relatively to human performance in Figure 2, we
see that the distributional-ablation primarily seems to lags
on games that are above human level or near it.

In terms of median performance, the agent performed
better when Noisy Nets were included; when these are re-
moved and exploration is delegated to the traditional ε-
greedy mechanism, performance was worse in aggregate
(red line in Figure 3). While the removal of Noisy Nets pro-
duced a large drop in performance for several games, it also
provided small increases in other games (Figure 4).

In aggregate, we did not observe a significant difference
when removing the dueling network from the full Rainbow.
The median score, however, hides the fact that the impact
of Dueling differed between games, as shown by Figure 4.
Figure 2 shows that Dueling perhaps provided some im-
provement on games with above-human performance levels
(# games > 200%), and some degradation on games with
sub-human performance (# games > 20%).

Also in the case of double Q-learning, the observed differ-
ence in median performance (Figure 3) is limited, with the
component sometimes harming or helping depending on the
game (Figure 4). To further investigate the role of double Q-
learning, we compared the predictions of our trained agents
to the actual discounted returns computed from clipped re-
wards. Comparing Rainbow to the agent where double Q-
learning was ablated, we observed that the actual returns are
often higher than 10 and therefore fall outside the support
of the distribution, spanning from−10 to +10. This leads to
underestimated returns, rather than overestimations. We hy-
pothesize that clipping the values to this constrained range
counteracts the overestimation bias of Q-learning. Note,
however, that the importance of double Q-learning may in-
crease if the support of the distributions is expanded.

Discussion

We have demonstrated that several improvements to DQN
can be successfully integrated into a single learning algo-
rithm that achieves state-of-the-art performance. Moreover,
we have shown that within the integrated algorithm, all but
one of the components provided clear performance bene-
fits. There are many more algorithmic components that we
were not able to include, which would be promising candi-
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Figure 2.20: Training curves for the combined components of Rainbow left: Ab-
lations of Rainbow with individual components switched on indepen-
dently, we observe that distributional, prioritized and Dueling DQN
produce the greatest individual improvement in performance. Right:
Ablations of Rainbow where one component is excluded from the
training algorithm, we observe that the exclusion of multi-step or pri-
oritized experience replay have the most impact on the performance
of the combined algorithm. Figure from (Hessel et al. 2018a).

at additional computational cost. For example, for sequences of 40 steps with 40

steps of burn-in the computation cost for the forward pass is doubled, however
the computational requirements of the backwards pass remains the same as we
do not need to calculate gradients over the first 40 steps. In this setup, there is
therefore 50% more computation to perform, so clearly there is a trade-off to be
made in terms of training time, environment interactions and the performance of
the final policy.

It is worth mentioning that many of the contributions in the R2D2 work were
previously made by the authors of (Lample et al. 2017a), however (Kapturowski
et al. 2018) provide a more thorough and in depth empirical analysis.

2.5.4.4 Soft Actor-Critic

The Soft Actor-Critic algorithm (SAC) (Haarnoja et al. 2018a) aims to bridge to gap
between on-policy and off-policy approaches by optimizing a stochastic policy in
an off-policy way. The original version of SAC was only applicable in continuous
action spaces, but recent works have addressed this issue (Christodoulou 2019).
The SAC algorithm modifies the reward of each state by introducing entropy-
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Figure 1: Top row shows Q-value discrepancy ∆Q as a measure for recurrent state staleness. (a)
Diagram of how ∆Q is computed, with green box indicating a whole sequence sampled from replay.
For simplicity, l = 0 (no burn-in). (b) ∆Q measured at first state and last state of replay sequences,
for agents training on a selection of DMLab levels (indicated by initials) with different training
strategies. Bars are averages over seeds and through time indicated by bold line on x-axis in bottom
row. (c) Learning curves on the same levels, varying the training strategy, and averaged over 3 seeds.

• Stored state: Storing the recurrent state in replay and using it to initialize the network at
training time. This partially remedies the weakness of the zero start state strategy, however
it may suffer from the effect of ‘representational drift’ leading to ‘recurrent state staleness’,
as the stored recurrent state generated by a sufficiently old network could differ significantly
from a typical state produced by a more recent version.
• Burn-in: Allow the network a ‘burn-in period’ by using a portion of the replay sequence

only for unrolling the network and producing a start state, and update the network only on
the remaining part of the sequence. We hypothesize that this allows the network to partially
recover from a poor start state (zero, or stored but stale) and find itself in a better initial state
before being required to produce accurate outputs.

In all our experiments we will be using the proposed agent architecture from Section 2.3 with replay
sequences of length m = 80, with an optional burn-in prefix of l = 40 or 20 steps. Our aim is to
assess the negative effects of representational drift and recurrent state staleness on network training
and how they are mitigated by the different training strategies. For that, we will compare the Q-
values produced by the network on sampled replay sequences when unrolled using one of these
strategies and the Q-values produced when using the true stored recurrent states at each step (see
Figure 1a, showing different sources for the hidden state).

More formally, let ot, . . . , ot+m and ht, . . . , ht+m denote the replay sequence of observations and
stored recurrent states, and denote by ht+1 = h(ot, ht; θ) and q(ht; θ) the recurrent state and Q-
value vector output by the recurrent neural network with parameter vector θ, respectively. We write
ĥt for the hidden state, used during training and initialized under one of the above strategies (either
ĥt = 0 or ĥt = ht). Then ĥt+i = h(ot+i−1, ĥt+i−1; θ̂) is computed by unrolling the network
with parameters θ̂ on the sequence ot, . . . , ot+l+m−1. We estimate the impact of representational
drift and recurrent state staleness by their effect on the Q-value estimates, by measuring Q-value
discrepancy

∆Q =
‖q(ĥt+i; θ̂)− q(ht+i; θ̂)‖2
|maxa,j(q(ĥt+j ; θ̂))a|

for the first (i = l) and last (i = l + m − 1) states of the non-burn-in part of the replay sequence
(see Figure 1a for an illustration). The normalization by the maximal Q-value helps comparability
between different environments and training stages, as the Q-value range of an agent can vary dras-

4

Figure 2.21: Analysis of performance of the R2D2 algorithm, (a) how the Q-
value discrepancy is computed in order to estimate how how storing
and burning in the hidden state affects the estimate of the Q-values.
(b) the Q-value discrepancy for initial and final states in a sequence
taken from the replay buffer. (c) Learning curves for a variety of
scenarios with the different burn-in strategies. In environments that
require exploration and sparse rewards, the approach of storing
state with burn-in achieves the highest performance. Figure from
(Kapturowski et al. 2018).

regularized RL. In entropy-regularized RL the agent’s reward is augmented with
the additional reward proportional to the entropy H of the policy for that state:

H(π(a, s)) = − log π(a|s). (2.48)

This modifies the reward function to depend not only on the underlying MDP
but also on the policy’s state-action distribution, we define the updated reward
function as:

rSAC(s, a) = r(s, a) + αH(π(a, s)). (2.49)

Where the α parameter controls the trade-off between the standard reward and
the entropy bonus. There are currently two variants of the SAC algorithm, one
that varies the α parameter during training and another that keeps it fixed. The
state-value and Q-value functions are trained based off this new reward function.
The SAC algorithm jointly learns two Q-functions Qφ1, Qφ2 and a policy πθ. The
method implements a trick, known as the clipped double-Q-trick, which takes the
minimum over the two Q function approximators:

L (φi,D) = E
(s,a,r,s′ ,d)∼D

[(
Qφi(s, a)− y

(
r, s′, d

))2
]

. (2.50)
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Figure 1: Training curves on continuous control benchmarks. Soft actor-critic (blue and yellow) performs
consistently across all tasks and outperforming both on-policy and off-policy methods in the most challenging
tasks.

are exceptionally difficult to solve with off-policy algorithms (Duan et al., 2016). The stability of
the algorithm also plays a large role in performance: easier tasks make it more practical to tune
hyperparameters to achieve good results, while the already narrow basins of effective hyperparameters
become prohibitively small for the more sensitive algorithms on the hardest benchmarks, leading to
poor performance (Gu et al., 2016).

7.1 Simulated Benchmarks

We compare our method to deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015), an
algorithm that is regarded as one of the more efficient off-policy deep RL methods (Duan et al.,
2016); proximal policy optimization (PPO) (Schulman et al., 2017b), a stable and effective on-policy
policy gradient algorithm; and soft Q-learning (SQL) (Haarnoja et al., 2017), a recent off-policy
algorithm for learning maximum entropy policies. Our SQL implementation also includes two
Q-functions, which we found to improve its performance in most environments. We additionally
compare to twin delayed deep deterministic policy gradient algorithm (TD3) (Fujimoto et al., 2018),
using the author-provided implementation. This is an extension to DDPG, proposed concurrently
to our method, that first applied the double Q-learning trick to continuous control along with other
improvements. We turned off the exploration noise for evaluation for DDPG and PPO. For maximum
entropy algorithms, which do not explicitly inject exploration noise, we either evaluated with the
exploration noise (SQL) or use the mean action (SAC). The source code of our SAC implementation2

is available online.

Figure 1 shows the total average return of evaluation rollouts during training for DDPG, PPO, and
TD3. We train five different instances of each algorithm with different random seeds, with each
performing one evaluation rollout every 1000 environment steps. The solid curves corresponds to
the mean and the shaded region to the minimum and maximum returns over the five trials. For SAC,
we include both a version, where the temperature parameter is fixed and treated as a hyperparameter
and tuned for each environment separately (orange), and a version where the temperature is adjusted
automatically (blue). The results show that, overall, SAC performs comparably to the baseline
methods on the easier tasks and outperforms them on the harder tasks with a large margin, both in
terms of learning speed and the final performance. For example, DDPG fails to make any progress on
Ant-v1, Humanoid-v1, and Humanoid (rllab), a result that is corroborated by prior work (Gu et al.,
2016; Duan et al., 2016). SAC also learns considerably faster than PPO as a consequence of the
large batch sizes PPO needs to learn stably on more high-dimensional and complex tasks. Another

2http://github.com/rail-berkeley/softlearning/

9

Figure 2.22: Results of the SAC algorithm applied to continuous control tasks,
compared against PPO (Schulman et al. 2017b), DDPG (Silver et al.
2014) and TD3 (Fujimoto et al. 2018). Figure from (Haarnoja et al.
2018a).

y
(
r, s′, d

)
= r+γ(1− d)

(
min
j=1,2

Qφtarg,j

(
s′, ã′

)
− α log πθ

(
ã′ | s′

))
, ã′ ∼ πθ

(
· | s′

)
.

(2.51)
As the policy should aim to maximize the value Vπ(s):

Vπ(s) = E
a∼π(.|s)

[Qπ(s, a)− α log π(a | s)] . (2.52)

We can reformulate the value function in order to construct the policy loss function,
where D is the agent’s replay buffer:

Lπ = E
(s,a)∼D

[
min
j=1,2

Qφj

(
s, a; θj

)
− α log π (a | s)

]
. (2.53)

The parameters of which can be learned with gradient ascent. SAC has shown to
be a powerful algorithm, that at the time of publication achieved state of the art
results in numerous continuous control tasks shown in Figure 2.22.

2.5.5 Deep RL Frameworks

There are numerous Deep RL frameworks that implement the vast majority of the
state of the art algorithms. We discuss here some popular RL frameworks. The
most fully featured framework is probably that of Ray RLlib (Liang et al. 2018)
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which contains over 16 RL algorithms and includes other approaches such as
evolutionary strategies. StableBaselines (Hill et al. 2018) is a popular and well
tested RL framework that includes 11 TensorFlow (Abadi et al. 2015) implementa-
tions and 7 PyTorch (Paszke et al. 2019) implementations of RL algorithms, the
downside being that the PyTorch implementations do not yet support recurrent
agent architectures. ACME (Hoffman et al. 2020) implements TensorFlow and
Jax (Bradbury et al. 2018) versions of 14 RL algorithms. TorchBeast (Küttler et
al. 2019) includes distributed implementations of the IMPALA (Espeholt et al.
2018b) and DD-PPO (Wijmans et al. 2019a) algorithms. Tianshou (Weng et al.
2021) offers 20 algorithms, recurrent support and a lightweight code-base, with
algorithms implemented in PyTorch. SampleFactory (Petrenko et al. 2020) offers a
highly optimized, 100,000 interaction per second, implementation of A-PPO, an
asynchronous version of the PPO algorithm.

The availability of these frameworks is clearly a great benefit to the community,
but in a research setting using a framework can be a double-edged sword. While it
can be fast to implement a baseline agent, the level of abstraction required to make
these frameworks flexible enough to handle a variety of algorithms can mean that
they are bloated and challenging to implement custom architectures, algorithms
and the addition of auxiliary losses. For these reasons, works presented in this
thesis use custom implementations of, typically, a single Deep RL algorithm. The
frameworks have provided us with the ability to validate the performance of our
baseline agent and also the open-source nature of these frameworks means they
can be used as a reference implementation.

2.6 Embodied AI Environments

There has been a large expansion to the number of Deep RL environments
available in the last five years, the most well known being the gym framework
(Brockman et al. 2016) which provides an interface to fully observable games such
as the Atari-57 benchmark. Mujuco (Todorov et al. 2012) has remained the de
facto standard for continuous control tasks, its recent open-source release can
only benefit the larger RL community. OpenSpiel (Lanctot et al. 2019) provides a
framework for RL in games such as Chess, Poker, Go, TicTacToe and Habani, to
name a few. There are a variety of partially observable 3D simulators available,
with more game-like environments such as the ViZDoom simulator (Wydmuch
et al. 2018), DeepMind-Lab (Beattie et al. 2016b) and Malmo (Johnson et al. 2016b).
A number of photo-realistic simulators have also been released such as Gibson
(Xia et al. 2018), AI2Thor (Kolve et al. 2017a), and the highly efficient Habitat-Lab
simulator (Savva et al. 2019a; Szot et al. 2021).

In this thesis our focus has been on agents learning to interact in 3D environ-
ments from a monocular, egocentric perspective. Here we introduce the two main
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Embodied AI simulators that we used to evaluate our contributions. Before we
begin it is important to introduce the Gym interface, which has become the norm
when interacting with a RL environment. OpenAI Gym (Brockman et al. 2016)
is an open source Python library for benchmarking RL algorithms. In addition,
the library defines an API for the communication between learning algorithms
and environments, the API has been widely adopted and most of the Deep RL
frameworks introduced in 2.5.5 support a Gym interface. In 2.6 we show the
interface for building and interacting with an environment that complies with the
gym API.

1 import gym

2 env = gym.make('CartPole -v1')

3

4 # env is created , now we can interact with it:

5 for episode in range (10):

6 obs = env.reset()

7 done = False

8 while not done:

9 action = env.action_space.sample () # replace with your model

10 obs , reward , done , info = env.step(action)

Listing 2.1: Example of the gym API

2.6.0.1 The ViZDoom simulator

ViZDoom (Kempka et al. 2017) is a highly efficient AI research platform based
on the classical First Person Shooter game Doom. ViZDoom can simulate 3D
environments of 10s of thousands of interactions per second on a single CPU and
allows for the development of Artificial Intelligence (AI) agents that interact with
only visual information. It is lightweight, fast, customizable and allows access to
additional state information such as depth buffers and class segmentations. Out
of the box, the simulator provides 8 tasks including single agent maze navigation
tasks, object collection tasks, scenarios where the agent must depend against
computer controlled bots and a multi-agent “DeathMatch” style scenario, example
environments are shown in Figure 2.23. The original framework does not provide
a gym interface, but one has been implemented by (Hakenes 2018), in chapter 3

we create and benchmark a set of challenging scenarios in the ViZDoom simulator.

2.6.0.2 The Habitat simulator

Habitat (Savva et al. 2019a; Szot et al. 2021) is a performant simulator that has
been designed from the ground up for the learning of agent behaviors. The
Habitat simulator provides several predefined embodied AI tasks such as point-
to-point navigation, instruction following and embodied question answering.
Agents can be configured with a number of sensors such as monocular RGB
cameras, depth sensors and virtual LIDAR. The simulator provides standard
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Figure 4. The map used for evaluation in the Track 1 (left), and three maps used in Track 2 in the 2016 edition of Visual Doom AI Competition.

Table III
RESULTS OF THE 2016 COMPETITION: TRACK 2. ‘M’ DENOTES MAP AND ‘T’ DENOTES A TOTAL STATISTIC.

Place Bot Total Frags F/D ratio Kills Suicides Deaths

M1 M2 M3 T M1 M2 M3 T M1 M2 M3 T

1 IntelAct 256 3.08 113 49 135 297 19 17 5 41 47 24 12 83
2 Arnold 164 32.8 76 37 53 167 2 1 0 3 3 1 1 5
3 TUHO 51 0.66 51 9 13 73 7 15 0 22 31 29 17 77
4 ColbyMules 18 0.13 8 5 13 26 1 7 0 8 60 27 44 129
5 5vision 12 0.09 12 10 4 26 3 8 3 14 45 37 47 131
6 Ivomi -2 -0.01 6 5 2 13 2 13 0 15 69 33 35 137
7 WallDestroyerXxx -9 -0.06 2 0 0 2 0 5 6 11 48 30 78 156

Table IV
ALGORITHMS AND FRAMEWORKS USED IN THE 2016 COMPETITION

Bot Framework used Algorithm

IntelAct Tensorflow Direct Future Prediction
(DFP)

F1 Tensorflow +
Tensorpack

A3C, curriculum learning

Arnold Theano DQN, DRQN
Clyde Tensorflow A3C
TUHO Theano + Lasagne DQN + Haar Detector
5vision Theano + Lasagne DARQN [31]

ColbyMules Neon unknown
AbyssII Tensorflow A3C
Ivomi Theano + Lasagne DQN

WallDestroyerXxx Chainer unknown

in the frame, the agent turned appropriately and fired.
The navigation network was used otherwise. TUHO was
trained only on the two supplied maps and two other
maps bundled with ViZDoom.

5) Discussion: Although the top bots were quite competent
and easily coped with the Doom’s built-in bots, no agent came
close to the human’s competence level. The bots were decent at
tactical decisions (aiming and shooting) but poor on a strategic
level (defense, escaping, navigation, exploration). This was

especially visible for Track 2, where the maps were larger and
required a situational awareness – bots often circled around the
same location, waiting for targets to appear.

No agent has been capable of vertical aiming. That is why
Arnold, which hardcoded crouching, avoided many projectiles,
achieving exceptionally a high frags/death ratio. Other bots,
probably, had never seen a crouching player during their
training and therefore were not able to react appropriately.

It was also observed that strafing (moving from side to side
without turning) was not used very effectively (if at all) and
agents did not make any attempts to dodge missiles – a feat
performed easily by humans. Bots did not seem to use any
memory as well, as they did not try to chase bots escaping
from their field of view.

Most of the submitted agents were trained with the state-of-
the-art (as of 2016) RL algorithms such as A3C and DQN but
the most successful ones additionally addressed the problem of
sparse, delayed rewards by auxiliary signals (IntelAct, Arnold)
or curriculum training (F1).

6) Logistics: Before the contest evaluation itself, three,
optional warm-up rounds were organized to accustom the
participants to the submission and evaluation process and give
them a possibility to check their bots effectiveness against each
other. The performance of solutions was tested on known maps

Figure 2.23: Example maps in the ViZDoom simulator, shown are environments
used for the “DeathMatch” scenario. Figure from (Kempka et al.
2017).

metrics that are common in the evaluation of embodied agents (Anderson et
al. 2018a). The simulator has the capacity to load a variety of photorealistic
environments, including the Gibson dataset (Xia et al. 2018), Matterport (Chang
et al. 2017) and Replica (Szot et al. 2021). The vast majority of datasets available
in the simulator are 3D scans of real world buildings, apartments and homes, an
example of these environments is shown in Figure 2.24. It is also fairly easy to add
new environments to the habitat simulator. During this thesis we had an external
company, https://3dcreation.fr/, perform a 3D a part of our laboratory which
we loaded into the habitat simulator, shown in Figure 2.25. A detailed analysis
of transfer of learned policies from simulator to the real world using this dataset
was undertaken by (Sadek et al. 2021). Although environments in the habitat
dataset are 3D, typically an instance of a problem is evaluated on one floor of
the environment, although several episodes can take place on different floors,
individual episodes are only on one floor. The environments available in Habitat
are generally uncluttered when compared to real-world apartments and houses,
which may pose a challenge when transferring policies learned in simulation to a
household robot.

While there are various tasks available in the Habitat dataset, the two that we
focused on during this PhD were that of point-goal and image-goal. The point-goal
task is defined as follows, the agent starts at position pstart and must perform GPS
guided navigation to position pgoal, that is at each time-step the relative position
of the goal is provided to the agent. In addition to the relative goal position, the
agent’s observation can include an RGB(D) monocular image. The typical action
space for this task is [TURN_LEFT, TURN_RIGHT, MOVE_FORWARD, STOP],
where turns are in 10 degree increments and movements are 0.25 m. Movements
can be considered perfect or modeled to use noisy motor actuation. The tasks
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0: critical reconstruction artifacts, holes, or texture issues 1: big holes or significant texture issues and reconstruction artifacts

2: big holes or significant texture issues, but good reconstruction 3: small holes, some texture issues, good reconstruction

4: no holes, some texture issues, good reconstruction 5: no holes, uniform textures, good reconstruction

Figure 11: Rating scale used in curation of 3D textured mesh reconstructions from the Gibson dataset. We use only meshes with ratings of 4
or higher for the Habitat Challenge dataset.

Figure 2.24: Example environments in the Habitat simulator, shown are ren-
derings from virtual monocular cameras in two homes. There are
artifacts in the 3D reconstruction due to interference from external
intra-red light sources and from occlusions, nevertheless the recon-
structions are of relatively high quality. (Savva et al. 2019a).

also include a STOP action which the agent must output when it considers it have
completed the task. In most tasks the stopping distance dstop is 0.2 m of pgoal in
order to consider an episode to be successful.

In the image-goal task, (Zhu et al. 2017) the agent starts at position pstart and
must navigate to position pgoal. But instead of being provided a relative goal
position, the agent’s observation includes an image, or set of images, captured at
the goal location. Invariably, this task is far more challenging than that of point-
goal as the agent must learn to recognize objects and features in the goal image
and learn to navigate in towards them. In chapter 5 we extend this task to the
sequential image-goal setting, where an agent much navigate to one image-goal
location and then to another in order, which tests the agent’s capacity to store
information about the environment in its internal representation.

Typically two metrics are used to evaluate embodied agents, accuracy and
Success weighted by Path Length (SPL) (Anderson et al. 2018a):

1
N

N

∑
i=1

Si
`i

max (pi, `i)
. (2.54)

Which weights the performance of each episode by the ratio of the optimal path
length and the episodes’ path length, which provide a better indication of the
overall optimality of the agent’s performance. Accuracy is the average number
of episodes that have been completed successfully divided by the number of
episodes.
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Figure 2.25: 3D scan of the first floor of the CITI laboratory. Left: Rendered
with a virtual monocular RGB camera, right: on overview of the scan.
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Figure 6: TRPO codebase comparison using our default set
of hyperparameters (as used in other experiments).

and 2, as well as a sample comparison in Figure 6. This
demonstrates the necessity that implementation details be
enumerated, codebases packaged with publications, and that
performance of baseline experiments in novel works matches
the original baseline publication code.

Reporting Evaluation Metrics

In this section we analyze some of the evaluation metrics
commonly used in the reinforcement learning literature. In
practice, RL algorithms are often evaluated by simply pre-
senting plots or tables of average cumulative reward (average
returns) and, more recently, of maximum reward achieved
over a fixed number of timesteps. Due to the unstable na-
ture of many of these algorithms, simply reporting the max-
imum returns is typically inadequate for fair comparison;
even reporting average returns can be misleading as the range
of performance across seeds and trials is unknown. Alone,
these may not provide a clear picture of an algorithm’s range
of performance. However, when combined with confidence
intervals, this may be adequate to make an informed deci-
sion given a large enough number of trials. As such, we
investigate using the bootstrap and significance testing as in
ML (Kohavi and others 1995; Bouckaert and Frank 2004;
Nadeau and Bengio 2000) to evaluate algorithm performance.

Online View vs. Policy Optimization An important dis-
tinction when reporting results is the online learning view
versus the policy optimization view of RL. In the online view,
an agent will optimize the returns across the entire learning
process and there is not necessarily an end to the agent’s
trajectory. In this view, evaluations can use the average cumu-
lative rewards across the entire learning process (balancing
exploration and exploitation) as in (Hofer and Gimbert 2016),
or can possibly use offline evaluation as in (Mandel et al.
2016). The alternate view corresponds to policy optimization,
where evaluation is performed using a target policy in an of-

fline manner. In the policy optimization view it is important to
run evaluations across the entire length of the task trajectory
with a single target policy to determine the average returns
that the target can obtain. We focus on evaluation methods
for the policy optimization view (with offline evaluation), but
the same principles can be applied to the online view.

Confidence Bounds The sample bootstrap has been a pop-
ular method to gain insight into a population distribution
from a smaller sample (Efron and Tibshirani 1994). Boot-
strap methods are particularly popular for A/B testing, and
we can borrow some ideas from this field. Generally a boot-
strap estimator is obtained by resampling with replacement
many times to generate a statistically relevant mean and con-
fidence bound. Using this technique, we can gain insight into
what is the 95% confidence interval of the results from our
section on environments. Table 3 shows the bootstrap mean
and 95% confidence bounds on our environment experiments.
Confidence intervals can vary wildly between algorithms and
environments. We find that TRPO and PPO are the most
stable with small confidence bounds from the bootstrap. In
cases where confidence bounds are exceedingly large, it may
be necessary to run more trials (i.e. increase the sample size).

Power Analysis Another method to determine if the
sample size must be increased is bootstrap power analy-
sis (Tufféry 2011; Yuan and Hayashi 2003). If we use our
sample and give it some uniform lift (for example, scaling uni-
formly by 1.25), we can run many bootstrap simulations and
determine what percentage of the simulations result in statis-
tically significant values with the lift. If there is a small per-
centage of significant values, a larger sample size is needed
(more trials must be run). We do this across all environment
experiment trial runs and indeed find that, in more unstable
settings, the bootstrap power percentage leans towards in-
significant results in the lift experiment. Conversely, in stable
trials (e.g. TRPO on Hopper-v1) with a small sample size,
the lift experiment shows that no more trials are needed to
generate significant comparisons. These results are provided
in the supplemental material.

Significance An important factor when deciding on an
RL algorithm to use is the significance of the reported gains
based on a given metric. Several works have investigated
the use of significance metrics to assess the reliability of
reported evaluation metrics in ML. However, few works in
reinforcement learning assess the significance of reported
metrics. Based on our experimental results which indicate
that algorithm performance can vary wildly based simply on
perturbations of random seeds, it is clear that some metric is
necessary for assessing the significance of algorithm perfor-
mance gains and the confidence of reported metrics. While
more research and investigation is needed to determine the
best metrics for assessing RL algorithms, we investigate an
initial set of metrics based on results from ML.

In supervised learning, k-fold t-test, corrected resampled t-
test, and other significance metrics have been discussed when
comparing machine learning results (Bouckaert and Frank
2004; Nadeau and Bengio 2000). However, the assumptions
pertaining to the underlying data with corrected metrics do
not necessarily apply in RL. Further work is needed to inves-
tigate proper corrected significance tests for RL. Nonetheless,

3212

Figure 2.26: A comparison of three implementations of the TRPO (Schulman
et al. 2015) algorithm. We observe that performance varies greatly
between the different implementations. Two of the implementations
the author of the TRPO algorithm in 2015 and 2017. Figure from
(Henderson et al. 2018).
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2.7 Practicalities of Deep RL experimentation

While Deep Reinforcement Learning has made enormous progress in the last
decade, there are some inherent weaknesses to this approach. The authors of Deep
Reinforcement Learning that Matters (Henderson et al. 2018) highlight several
issues in the Deep RL community, notably: reproducibility, hyper-parameter
sensitivity, non-deterministic environments and inconsistencies in the reporting of
metrics. Through the publication of this work, the authors have spurred discussion
in the community. The work is recommended reading for any researcher interested
in applying Deep RL. We highlight one example, shown in Figure 2.26 which
shows a comparison of different implementations of a Deep RL algorithm TRPO
(Schulman et al. 2015). A large difference is observed between the performance
of the different implementations, which is surprising considering two of the
implementations are from the same author, who is also the inventor of the
algorithm. The authors conclude with the following recommendations: When
comparing two methods, many random seeds should be used to quantify the
variance and mean performance of each approach. Report all hyper-parameters
and share code where possible to foster reproducibility. Look to build hyper-
parameter agnostic algorithms that are less sensitive to reward scaling. We have
endeavored to follow these guidelines in the contributions made during this thesis.
Recently (Agarwal et al. 2021) has released an open-source toolbox for analyzing
Deep RL performance and provide a rigorous statistical analysis when comparing
Deep RL methods.

2.8 Robotics, classical planning and navigation

We highlight here some key works from the field of robotic navigation, as the
field is vast we provide a snapshot of related works that are pertinent to some
of the structured methods we have developed during this thesis. In particular,
we discuss Simultaneous Localization And Mapping (SLAM) and graph search
methods.

2.8.0.1 Simultaneous Localization and Mapping

SLAM (Durrant-Whyte et al. 2006) is a technique for planning and navigation in
3D spaces. As the name suggests, the approach performs an estimation of the
pose of the robotic agent while in parallel constructing a map of the environment.
The approach operates in situations where the robot’s odometry is noisy and
measurements from the environment are used to correct for the error in the
position of the robot. This is achieved by extracting key-points or landmarks from
the environment and then measuring the relative location of these landmarks again
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IEEE Robotics & Automation Magazine JUNE 2006100

was widely assumed at the time that the estimated map
errors would not converge and would instead exhibit a ran-
dom-walk behavior with unbounded error growth. Thus,
given the computational complexity of the mapping prob-
lem and without knowledge of the convergence behavior of
the map, researchers instead focused on a series of approxi-
mations to the consistent mapping problem, which assumed
or even forced the correlations between landmarks to be
minimized or eliminated, so reducing the full filter to a
series of decoupled landmark to vehicle filters ([28] and [38]
for example). Also for these reasons, theoretical work on the
combined localization and mapping problem came to a tem-
porary halt, with work often focused on either mapping or
localization as separate problems.

The conceptual breakthrough came with the realization
that the combined mapping and localization problem, once
formulated as a single estimation problem, was actually con-
vergent. Most importantly, it was recognized that the corre-
lations between landmarks, which most researchers had tried
to minimize, were actually the critical part of the problem
and that, on the contrary, the more these correlations grew,
the better the solution. The structure of the SLAM problem,
the convergence result and the coining of the acronym
SLAM was first presented in a mobile robotics survey paper
presented at the 1995 International Symposium on Robotics
Research [16]. The essential theory on convergence and
many of the initial results were developed by Csorba [10],

[11]. Several groups already working on mapping and local-
ization, notably at the Massachusetts Institute of Technology
[29], Zaragoza [4], [5], the ACFR at Sydney [20], [45], and
others [7], [13], began working in earnest on SLAM—also
called concurrent mapping and localization (CML) at this time—
in indoor, outdoor, and subsea environments.

At this time, work focused on improving computational
efficiency and addressing issues in data association, or loop
closure. The 1999 International Symposium on Robotics
Research (ISRR’99) [23] was an important meeting point
where the first SLAM session was held and where a degree
of convergence between the Kalman-filter-based SLAM
methods and the probabilistic localisation and mapping
methods introduced by Thrun [42] was achieved. The
2000 IEEE International Conference on Robotics and
Automation (ICRA) Workshop on SLAM attracted 15
researchers and focused on issues such as algorithmic com-
plexity, data association, and implementation challenges.
The following SLAM workshop at the 2002 ICRA attract-
ed 150 researchers with a broad range of interests and
applications. The 2002 SLAM summer school hosted by
Henrik Christiansen at KTH in Stockholm attracted all the
key researchers together with some 50 Ph.D. students from
around the world and was a tremendous success in building
the field. Interest in SLAM has grown exponentially in
recent years, and workshops continue to be held at both
ICRA and IROS. The SLAM summer school ran in 2004

in Toulouse and will run at Oxford,
England, in 2006.

Formulation and Structure
of the SLAM Problem
SLAM is a process by which a mobile
robot can build a map of an environ-
ment and at the same time use this map
to deduce its location. In SLAM, both
the trajectory of the platform and the
location of all landmarks are estimated
online without the need for any a priori
knowledge of location.

Preliminaries
Consider a mobile robot moving through
an environment taking relative observa-
tions of a number of unknown landmarks
using a sensor located on the robot as
shown in Figure 1. At a time instant k,
the following quantities are defined:

◆ xk : the state vector describing the
location and orientation of the
vehicle

◆ uk : the control vector, applied at
time k − 1 to drive the vehicle to
a state xk at time k

Figure 1. The essential SLAM problem. A simultaneous estimate of both robot and
landmark locations is required. The true locations are never known or measured
directly. Observations are made between true robot and landmark locations. 
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Robot Landmark

Estimated

True

Figure 2.27: An overview of the SLAM problem, the system performs a simulta-
neous estimate of the robot’s position and landmark locations. The
ground truth locations are undisclosed and are not measured directly.
Figure from (Durrant-Whyte et al. 2006).

after the robot has moved. An Extended Kalman filter (Ribeiro 2004) is responsible
for updating the estimate of the agent’s position based on the observed landmarks.
The algorithm performs simultaneous tracking of the errors in the position of
both the landmarks and the robot’s position. There are numerous variants of the
SLAM algorithm that can be based on LIDAR measurements, RGB, RGB-D or
key-points extracted from a monocular camera. Popular SLAM variants are ORB
SLAM (Mur-Artal et al. 2014; Mur-Artal et al. 2017), LSD SLAM (Engel et al. 2014)
and Stereo Parallel Tracking and Mapping (Pire et al. 2017). Classical approaches
rely on matching with handcrafted methods, but recently the incorporation of
learned depth prediction has been shown to improve performance (Tateno et al.
2017; Bloesch et al. 2018). The addition of learned semantic predictions enables the
use of Semantic SLAM (Bowman et al. 2017) which can create maps that include
predictions of vehicles, buildings, pedestrians and navigable space.

Recent work (Mishkin et al. 2019) has benchmarked SLAM approaches against
end-to-end learning-based methods in common simulated 3D environments and
performs a detailed evaluation in environments of varying difficulty. (Mishkin
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Figure 2.28: Three iterations of the Bellman-Ford algorithm. Shown for an ex-
ample undirected graph with three vertices with the source node in
green.

et al. 2019) found that the classic SLAM pipeline can perform well in complex
cluttered environments. However, the learned end-to-end systems are more robust
when operating with a limited sensor suite. In addition, both the handcrafted
SLAM approach and the end-to-end approach are far below human performance.

2.8.1 Graph search

In environments where the map is known and a (directed) graph G can be
constructed of vertices V and edges E, optimal planning algorithms can be used
to find the shortest path between two locations. The most popular algorithms
include Dijkstra (Dijkstra 1959) and heuristic-based algorithms such as A* (Hart
et al. 1968b). There are extended versions of A* such as D* (Stentz 1997; Stentz
et al. 1995; Koenig et al. 2005) and LPA* (Koenig et al. 2004b), which modify
the heuristic used the incorporate unknown terrain and allow for updates to the
map based on new information. There are implementations of hierarchical graph
search algorithms (Fernandez et al. 1998; Fernández-Madrigal et al. 2002), where
the graph is decomposed into several graphs at multiple scales allowing coarse-
grained planning over large distances and finer planning over short distances.
A further popular method is that of the Fast Marching method (Sethian 1996;
Sethian 1999), which is a wavefront-based approach to calculate distances from
one particular cell to its neighbors. Here we explain two classical graph search
algorithms that were used during the thesis, Bellman-ford and Dijkstra.

2.8.1.1 Bellman-Ford

This algorithm computes the shortest path from a single source vertex to all other
vertices in a weighted directed graph. A strength of this algorithm is that it is able
to handle edges with a negative cost, although we will omit this feature for brevity
as it was not required for the work undertaken in this thesis. In addition, the
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algorithm does not require a priority queue, which provides certain advantages
when we implemented a differentiable approximation, introduced in chapter
5. The algorithm runs in O(|V||̇E|) time, where |V| and |E| are the number of
vertices and edges. At the start of the algorithm, each vertex is initialized with
a bound on the cost to the source node, which is first set to a value of infinity.
The shortest paths are identified by iteratively updating a bound on the shortest
distance from each node to a target vertex. At each update a vertex queries its
neighbors, updating the bound based on:

distancej = min[distancei + wij]. (2.55)

Where distance is the last bound estimate and wij is the cost between vertex i and
vertex j. The algorithm is detailed in 2.4. Three iterations of the algorithm are
demonstrated on a toy problem in Figure 2.28.

Algorithm 2.4 Bellman-Ford
function Bellman-Ford(List vertices, List edges, Vertex source)

distance← List of size n
predecessor← List of size n
for vertex v in vertices do

distance[v]← inf
predecessor[v]← null
distance[source]← 0

end for
for i← 1 to |V| do

for edge (u, v, w) in edges do
if distance[u] + w ≤ distance[v] then

distance[v]← distance[u] + w
predecessor[v]← u

end if
end for

end for
return distance, predecessor

end function

2.8.1.2 Dijkstra

Dijksta’s algorithm is one of the most well known graph search algorithms. It can
be used to find the shortest paths between two nodes on a digraph or the shortest
paths to all nodes from a source node. This algorithm was used to generate the
ground truth for our work in chapter 5. Unlike the Bellman-Ford algorithm, the
algorithm requires all edges to have a positive cost. The algorithm requires a
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priority queue and runs in O((|V|+ |E|)log|V|) time, where |V| and |E| are the
number of vertices and edges respectively. The algorithm is detailed in 2.5.

Algorithm 2.5 Dijkstra
function Dijkstra(Graph graph, Vertex source)

create priority queue Q
for each vertex v in Graph do

if v 6= source then
distance[v]← inf
predecessor[v]← null

end if
end for
Q.add(v, dist[v])
while Q is not empty do

u← Q.extract_min()
for each neighbor v of u do

alt← distance[u] + cost(u, v)
if alt < distance[v] then

distance[v]← alt
predecessor[v]← u

end if
end for

end while
return distance, predecessor

end function

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI038/these.pdf 
© [E. Beeching], [2022], INSA Lyon, tous droits réservés



56 related works

2.9 Structured Deep Reinforcement Learning

2.9.1 Motivation

As we deploy Embodied AI agents in ever more complex environments, their
capacity to reason about the world they inhabit must be expanded. One approach
to this problem, that we discussed in section 2.7, is increasing the number of
parameters available in the agent’s network architecture. The difficulty of this
strategy is that many network components scale in a non-linear manner. For
example, an LSTM module, common in memory-based agents, stores its internal
representation in two 1D vectors h and c, if we wish to double the capacity of
h and c there is a quadratic scaling of the LSTM module’s parameters. As we
encounter ever more complex scenarios the strategy of scaling will inevitably
reach its limits, particularly if we wish to deploy a trained system in the real
world where inference time and hardware limitations must be considered. In
addition, the unstable nature of Deep RL training is exacerbated by the increase in
model complexity.

In this thesis, we explore an alternate approach, whereby analyzing the underly-
ing problem or environment the agent interacts with, we structure components of
the agent’s network architecture to exploit physical properties of the environment
such as projective geometry, estimated connectivity of free space, and building
metric or topological maps. To enhance the agent’s reasoning processes we add
the capacity to self-attending to its internal memory and reason about the location
of previously observed environment features. By constructing an embodied agent
in such a manner we aim to:

• Improve the generalization performance of the agent when evaluated in
unseen environment instances.

• Increase sample efficiency when learning a policy, when compared to an
unstructured agent.

• Provide the ability to interpret the agent’s reasoning process, through visu-
alization of its structured representations.

The construction of structured network priors through the decomposition of the
agent’s task and environment is a niche but expanding sub-domain of Deep RL.
The following section introduces prior and concurrent works that were studied
during this thesis.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI038/these.pdf 
© [E. Beeching], [2022], INSA Lyon, tous droits réservés



2.9 structured deep reinforcement learning 57

Published as a conference paper at ICLR 2018

regularized the input and output weights according to equation (4) and the squared firing rates of the
units (referred to as metabolic cost) according to equation (5). In sum, the training aims to minimize
a loss function, that consists of the error of the animal, the metabolic cost, and a penalty for large
network parameters.
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We find that the results are qualitatively insensitive to the initialization schemes used for the re-
current weight matrix W rec. For the results presented in this paper, simulations in the hexagonal
environment were obtained by initializing the elements of W rec to be zero mean Gaussian random
variables with variance 1.52/N , and simulations in the square and triangular environments were
initialized with an orthogonal W rec (Saxe et al., 2014). We initialized the bias b and output weights
W out to be zero. The elements of W in were zero mean Gaussian variables with variance 1/Nin.
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Figure 2: Different types of spatial selective responses of units in the trained RNN. Example sim-
ulation results for three different environments (square, triangular, hexagon) are presented. Blue
(yellow) represents low (high) activity. a) Grid-like responses. b) Band-like responses; c) Border-
related responses; d) Spatially irregular responses. These responses can be spatially selective but
they do not form a regular pattern defined in the conventional sense.

3 RESULTS

We run simulation experiments in arenas with different boundary shapes, including square, triangu-
lar and hexagonal. Figure 1c shows a typical example of the model performance after training; the
network (red trace) accurately tracks the animal’s actual path (black).

3.1 TUNING PROPERTIES OF THE MODEL NEURONS

We are mostly interested in what kind of representation the RNN has learned to solve this navigation
task, and whether such a representation resembles the response properties of neurons in EC (Moser
et al., 2008).

3.1.1 SPATIAL TUNING

To test whether the trained RNN developed location-selective representations, we plot individual
neurons’ mean activity level as a function of the animal’s location during spatial exploration. Note

4

Figure 2.29: Artificial grid cell responses in a trained RNN. Color indicated the
intensity of the activity ranging from low (blue) to high (yellow). a)
Grid-like responses. b) Responses that contain banding. c) Border-
cell-like responses. d) Irregular responses. Figure from (Cueva et al.
2018).

2.9.2 Structured approaches

Works in the domain of Structured Deep RL fit broadly in two categories: algorith-
mic structure and map-based structure. Within these approaches, there are also
some variations such as metric and topological maps. The inspiration of many
of the map-based approaches is biologically inspired. Innately humans store
key-points about their environment and navigate using way-points with estimates
of the shortest path between two locations. There is a plethora of neuroscience
research into the internal representations of mammals. Rodents develop grid cells,
which fire at different locations with different spatial frequencies and phases, a
discovery that led to the 2014 Nobel prize in medicine (O’Keefe et al. 1971; Hafting
et al. 2005). A similar structure emerges in artificial neural networks trained to
localize themselves, discovered independently by two different research groups
(Cueva et al. 2018; Banino et al. 2018), refer to Figure 2.29.

2.9.2.1 Algorithmic Structure

In several works, the network architecture has been structured such that it can
learn the operations of a specific algorithm. In the case of Value Iteration Networks
(Tamar et al. 2016) the authors aim to learn a general policy that solves navigation
in either grid-world or continuous environments. The state representation is an
image of the environment, in the case of the grid-world each pixel is an obstacle,
free-space, the agent’s location or the goal location. The authors demonstrate
that a policy based on CNN architecture with 5 convolutional layers achieves a
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Figure 2: Architecture of the mapper: The mapper module processes first person images from the robot and integrates the observations into a latent

memory, which corresponds to an egocentric map of the top-view of the environment. The mapping operation is not supervised explicitly – the mapper is

free to write into memory whatever information is most useful for the planner. In addition to filling in obstacles, the mapper also stores confidence values in

the map, which allows it to make probabilistic predictions about unobserved parts of the map by exploiting learned patterns.

they have not been trained on.

In context of navigation, learning and DRL has been

used to obtain policies [4,12,13,21,35,50,56,59,64]. Some

of these works [21, 35], focus on the problem of learning

controllers for effectively maneuvering around obstacles di-

rectly from raw sensor data. Others, such as [9, 50, 56],

focus on the planning problem associated with navigation

under full state information [56], designing strategies for

faster learning via episodic control [9], or incorporate mem-

ory into DRL algorithms to ease generalization to new en-

vironments. Most of this research (except [64]) focuses on

navigation in synthetic mazes which have little structure to

them. Given these environments are randomly generated,

the policy learns a random exploration strategy, but has no

statistical regularities in the layout that it can exploit. We in-

stead test on layouts obtained from real buildings, and show

that our architecture consistently outperforms feed forward

and LSTM models used in prior work.

The research most directly relevant to our work is the

contemporary work of Zhu et al. [64]. Similar to us, Zhu

et al. also study first-person view navigation using macro-

actions in more realistic environments instead of synthetic

mazes. Zhu et al. propose a feed forward model which when

trained in one environment can be finetuned in another en-

vironment. Such a memory-less agent cannot map, plan or

explore the environment, which our expressive model nat-

urally does. Zhu et al. also don’t consider zero-shot gener-

alization to previously unseen environments, and focus on

smaller worlds where memorization of landmarks is feasi-

ble. In contrast, we explicitly handle generalization to new,

never before seen interiors, and show that our model gener-

alizes successfully to floor plans not seen during training.

Relationship to Contemporary Work. Since conduct-

ing this research, numerous other works that study visual

navigation have come out. Most notable among these is

the work from Sadeghi and Levine [53] that shows that

simulated mobility policies can transfer to the real world.

Mirowski et al. [46] study sources of auxiliary supervi-

sion for faster training with RL. Bhatti et al. [8] incorpo-

rate SLAM based maps for improving the performance at

playing Doom. Brahmbhatt and Hays [10] study naviga-

tion in cities using feed-forward models. Zhang et al. [62]

and Duan et al. [16] show how to speed up learning for re-

lated tasks. [8, 16, 46] show results in synthetic mazes, and

only [10, 53, 62] show results with real images. While all

these works study visual navigation, none of them leverage

mapping and planning modules or propose end-to-end ar-

chitectures for jointly mapping and planning which is the

focus of our work.

3. Problem Setup

To be able to focus on the high-level mapping and plan-

ning problem we remove confounding factors arising from

low-level control by conducting our experiments in simu-

lated real world indoor environments. Studying the prob-

lem in simulation makes it easier to run exhaustive evalu-

ation experiments, while the use of scanned real world en-

vironments allows us to retains the richness and complex-

ity of real scenes. We also only study the static version of

the problem, though extensions to dynamic environments

would be interesting to explore in future work.

We model the robot as a cylinder of a fixed radius and

height, equipped with vision sensors (RGB cameras or

depth cameras) mounted at a fixed height and oriented at
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Figure 2.30: Cognitive mapping and planning Deep Neural network architecture
from Cognitive mapping and planning. Figure from (Gupta et al.
2017a).

lower generalization performance than a CNN architecture structured so that it can
represent a differential approximation of the value-iteration algorithm (Bellman
1957). Universal Planning Networks (Srinivas et al. 2018) perform goal-directed
navigation in a continuous control setting, by learning a forward planning model
in a latent space to infer the optimal sequence of actions to take. They exploit
the learned UPN representations to create a dense reward function that is used
to augment the performance of model-free RL on more challenging tasks with
image-based goals.

The authors of QMDP-Net (Karkus et al. 2017) construct a recurrent policy
network for planning in partially observable problems. The recurrent policy
embeds a planning algorithm in the network’s architecture. Allowing end-to-end
training in a fully differentiable manner. It is intriguing that the network encodes a
trainable representation of the QMDP algorithm (Littman et al. 1995), but is shown
to outperform the QMDP algorithm in a subset of their experiments, thanks to
the adaptability of end-to-end learning.

2.9.2.2 Metric map-based approaches

Grid-based structured neural memory comes as a natural extension to the dis-
cretized metric maps used in SLAM and other planning methods. These approaches
can be considered to be loosely biologically inspired, with examples found in
rodents of grid-cells and place-cells. Cognitive Mapping and Planning for Visual
Navigation (Gupta et al. 2017a) was the first spatially structured neural network
approach for robotic control. The authors created a Deep Neural Network archi-
tecture that contains a learned belief state, that is translated and rotated from one
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Figure 1: Overview of our approach. The Neural SLAM module predicts a map and agent pose estimate from
incoming RGB observations and sensor readings. This map and pose are used by a Global policy to output a
long-term goal, which is converted to a short-term goal using an analytic path planner. A Local Policy is trained
to navigate to this short-term goal.

uForward = (0.25, 0, 0), uRight : (0, 0,−10 ∗ π/180) and uLeft : (0, 0, 10 ∗ π/180). In practice, a
robot can also rotate slightly while moving forward and translate a bit while rotating on-the-spot,
creating rotational actuation noise in forward action and similarly, a translation actuation noise in
on-the-spot rotation actions.

We use a LoCoBot1 to collect data for building the actuation and sensor noise models. We use the
pyrobot API (Murali et al., 2019) along with ROS (Quigley et al., 2009) to implement the control
commands and get sensor readings. For each action a, we fit a separate Gaussian Mixture Model
for the actuation noise and sensor noise, making a total of 6 models. Each component in these
Gaussian mixture models is a multi-variate Gaussian in 3 variables, x, y and o. For each model, we
collect 600 datapoints. The number of components in each Gaussian mixture model is chosen using
cross-validation. We implement these actuation and sensor noise models in the Habitat simulator for
our experiments. We have released the noise models, along with their implementation in the Habitat
simulator in the open-source code.

4 METHODS

We propose a modular navigation model, ‘Active Neural SLAM’. It consists of three components: a
Neural SLAM module, a Global policy and a Local policy as shown in Figure 1. The Neural SLAM
module predicts the map of the environment and the agent pose based on the current observations
and previous predictions. The Global policy uses the predicted map and agent pose to produce a
long-term goal. The long-term goal is converted into a short-term goal using path planning. The
Local policy takes navigational actions based on the current observation to reach the short-term goal.

Map Representation. The Active Neural SLAM model internally maintains a spatial map, mt and
pose of the agent xt. The spatial map, mt, is a 2×M ×M matrix where M ×M denotes the
map size and each element in this spatial map corresponds to a cell of size 25cm2 (5cm × 5cm)
in the physical world. Each element in the first channel denotes the probability of an obstacle at
the corresponding location and each element in the second channel denotes the probability of that
location being explored. A cell is considered to be explored when it is known to be free space or an
obstacle. The spatial map is initialized with all zeros at the beginning of an episode,m0 = [0]2×M×M .
The pose xt ∈ R3 denotes the x and y coordinates of the agent and the orientation of the agent at
time t. The agent always starts at the center of the map facing east at the beginning of the episode,
x0 = (M/2,M/2, 0.0).

Neural SLAM Module. The Neural SLAM Module (fSLAM ) takes in the current RGB observation,
st, the current and last sensor reading of the agent pose x′t−1:t, last agent pose and map estimates,
x̂t−1,mt−1 and outputs an updated map, mt, and the current agent pose estimate, x̂t, (see Figure
2): mt, x̂t = fSLAM (st, x

′
t−1:t, x̂t−1,mt−1|θS), where θS denote the trainable parameters of the

Neural SLAM module. It consists of two learned components, a Mapper and a Pose Estimator. The
Mapper (fMap) outputs a egocentric top-down 2D spatial map, pegot ∈ [0, 1]2×V×V (where V is
the vision range), predicting the obstacles and the explored area in the current observation. The
Pose Estimator (fPE) predicts the agent pose (x̂t) based on past pose estimate (x̂t−1) and last two

1http://locobot.org
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Figure 2.31: The active neural SLAM architecture, the system predicts both the
agent pose and a map from RGB and sensor observations. Planning
and navigation are decoupled by using a global policy to output long-
term goals and a local policy to navigate to short-term goals which
are computed with an analytic path planner. Figure from (Chaplot
et al. 2020a).

time-step to the next depending on the ego-motion of the agent. An overview
of the architecture is shown in Figure 2.30, the structured hidden state is passed
from one time-step to the next, allowing the agent to perform spatial reason and
planning. In this work, the policy was learned with a technique called imitation
learning, where we are provided with sequences of observations and action labels,
created by a (human) expert to supervise the training process. A limitation is that
the ego-motions of the agent are restricted to 90-degree rotations.

MapNet (Henriques et al. 2018a) build an allocentric map of the environment
using a ground projection module to map CNN feature vectors from screen-space
to world-space, which are integrated into the map with an LSTM-based update
operation. The parameters of the architecture are learned with imitation learning,
rather than a Deep RL approach. Their work also performs a localization step so
it is not dependent on measurements of the agent’s ego-motion.

The authors of Neural map: Structured memory for deep reinforcement learning
(Parisotto et al. 2017a), develop a model with a spatially structured neural memory
that is learned end-to-end with Deep reinforcement Learning, the memory is read
with self-attention and global read operations with a CNN. A potential downside to
this approach is what the agent observes is mapped to where the agent is located,
not to where the features from the observations are located in the environment.
In addition, the agent’s action space is limited to 90-degree rotations, limiting the
applicability of this approach.

Neural SLAM (Zhang et al. 2017a) aims to mimic the SLAM algorithm in a
differentiable manner, with the use of an external memory architecture which is
addressed with attention. They demonstrate a large improvement in performance
when compared to an unstructured baseline agent, in environments where long-
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(a) (b) (c)

Figure 4: Simple 2D Navigation: (Left) Two simple navigation environments. (Center) An agent
that combines a goal-conditioned policy with search is substantially more successful at reaching
distant goals in these environments than using the goal-conditioned policy alone. (Right) A standard
goal-conditioned policy (top) fails to reach distant goals. Applying graph search on top of that same
policy (bottom) yields a sequence of intermediate waypoints (yellow squares) that enable the agent to
successfully reach distant goals.

5.1 Didactic Example: 2D Navigation

We start by building intuition for our method by applying it to two simple 2D navigation tasks, shown
in Figure 4a. The start and goal state are chosen randomly in free space, and reaching the goal often
takes over 100 steps, even for the optimal policy. We used goal-conditioned RL to learn a policy for
each environment, and then evaluated this policy on randomly sampled (start, goal) pairs of varying
difficulty. To implement SoRB, we used exactly the same policy, both to perform graph search and
then to reach each of the planned waypoints. In Figure 4b, we observe that the goal-conditioned
policy can reach nearby goals, but fails to generalize to distant goals. In contrast, SoRB successfully
reaches goals over 100 steps away, with little drop in success rate. Figure 4c compares rollouts from
the goal-conditioned policy and our policy. Note that our policy takes actions that temporarily lead
away from the goal so the agent can maneuver through a hallway to eventually reach the goal.

5.2 Planning over Images for Visual Navigation

Figure 5: Visual Navigation: Given an initial state
and goal state, our method automatically finds a
sequence of intermediate waypoints. The agent
then follows those waypoints to reach the goal.

We now examine how our method scales to
high-dimensional observations in a visual nav-
igation task, illustrated in Figure 5. We use 3D
houses from the SUNCG dataset (Song et al.,
2017), similar to the task described by Shah
et al. (2018). The agent receives either RGB
or depth images and takes actions to move
North/South/East/West. Following Shah et al.
(2018), we stitch four images into a panorama,
so the resulting observation has dimension 4×
24×32×C, where C is the number of channels
(3 for RGB, 1 for Depth). At the start of each
episode, we randomly sample an initial state and
goal state. We found that sampling nearby goals
(within 4 steps) more often (80% of the time)
improved the performance of goal-conditioned
RL. We use the same goal sampling distribution for all methods. The agent observes both the current
image and the goal image, and should take actions that lead to the goal state. The episode terminates
once the agent is within 1 meter of the goal. We also terminate if the agent has failed to reach the
goal after 20 time steps, but treat the two types of termination differently when computing the TD
error (see Pardo et al. (2017)). Note that it is challenging to specify a meaningful distance metric and
local policy on pixel inputs, so it is difficult to apply standard planning algorithms to this task.

On this task, we evaluate four state-of-the-art prior methods: hindsight experience replay
(HER) (Andrychowicz et al., 2017), distributional RL (C51) (Bellemare et al., 2017), semi-parametric
topological memory (SPTM) (Savinov et al., 2018a), and value iteration networks (VIN) (Tamar et al.,
2016). SoRB uses C51 as its underlying goal-conditioned policy. For VIN, we tuned the number of
iterations as well as the number of hidden units in the recurrent layer. For SPTM, we performed a
grid search over the threshold for adding edges, the threshold for choosing the next waypoint along

6

Figure 2.32: Steps of Search on the Replay buffer. When provided with an initial
state and a goal state, their system finds a sequence of intermediate
waypoints. A lower level agent can follow these waypoints to navigate
to the goal. Figure from (Eysenbach et al. 2019a).

term memory is a requirement. The approach is limited to grid-worlds and some
initial experimentation in Gazebo (Koenig et al. 2004a) environments.

Learning to explore using active neural SLAM (Chaplot et al. 2020a) couples
a high-level global policy, an analytic planner and a low-level local policy to
perform long-term planning and low-level control. The authors incorporate noise
models for both the sensors and the robot’s actuation, based on data collected
using the LoCoBot platform (Wögerer et al. 2012). The network is trained with a
combination of PPO (Schulman et al. 2017b) and supervised learning to perform
an exploratory task that maximizes coverage, the free space observed by the
agent during each episode. The authors demonstrate that the learned policy
can be transferred to the task of point-goal navigation, achieving state of the
art performance at the time of publication. An overview of the overall agent
architecture is shown in Figure 2.31.

(Wani et al. 2020) benchmark a number of metric map methods (Fang et al. 2019;
Oh et al. 2016), in addition to our EgoMap publication (Beeching et al. 2020c).
They extend these works by creating a global map that stored predictions of object
categories, that is trained with an auxiliary loss supervised with ground truth
object categories. A similar approach is employed by (Chaplot et al. 2020d) to
build an episodic semantic map of the environment.

2.9.2.3 Topological map-based approaches

Humans appear to innately navigate through key-point or landmark-based plan-
ning, we recognize and store key locations in our environment and use these
to self-localize and perform hierarchical planning and navigation. Topological
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(a) Overview (b) Memory Update

Figure 1: (a) Overview of the proposed method. The proposed method consists of two modules as shown in the figure. The memory
update module builds a visual graph memory (VGM) using et, which is the unsupervised representation of the current image ot encoded by
the encoder Floc. In the navigation module, Fvis encodes the current and target images (ot, otarget) into feature embeddings (rt, rtarget).
Then, the memory processor associates them with the VGM and outputs context vectors (ct, ctarget). Finally, ct, ctarget and rt are con-
catenated and fed into a recurrent action policy network Fact. The action policy network Fact returns an action distribution for the agent to
take. (b) Memory update process. In a VGM, each node embedding is an image representation et. At every time step t, the memory update
module compares et with the node embeddings by calculating similarities. Based on the results, the memory update module localizes the
agent and determines how to update the graph structure of the VGM.

and contains a significantly smaller number of memory el-
ements in the memory. In addition, our navigation agent is
able to conduct a given navigation task even with a limited
size of memory.

3. Method
3.1. Problem Formulation

We first formulate the image-goal navigation task before
explaining the proposed navigation method. The objective
of image-goal navigation is to successfully arrive at the tar-
get location using the image of the target location, otarget,
and a sequence of image observations, {ot}, collected dur-
ing navigation. At each time step t, the agent receives an
RGBD panoramic image, ot, of the current location. Any
additional guidance, e.g., GPS, demonstration images, and
language instructions, are not provided.

The target location may not be visible from the start po-
sition, so the agent is required to explore an unfamiliar en-
vironment to find the target. Remembering the navigation
history can be helpful to the agent for an efficient target
search. Also, it is important to explore places where the tar-
get is more likely to be present, rather than exploring all
areas.

The action space of an agent is discrete and has four op-
tions: {Stop, Move Forward, Turn Left, Turn Right}. When
the agent performs a forward action, the agent moves 0.25m
forward. A turning action rotates the agent for 10 degrees in
the selected direction. The navigation becomes a success
when the agent takes the stop action within 1m from the
target location.

3.2. Method Overview
Figure 1a shows an overview of the proposed naviga-

tion framework with a visual graph memory (VGM). The
navigation framework consists of two modules: the mem-
ory update module and the navigation module. The memory
update module contains a pretrained image encoder, Floc,
which encodes an image ot into a representation vector et.
The memory update module gradually builds a VGM using
et during the navigation. The navigation module has an-
other image encoder Fvis which encodes the observations
(ot, otarget) into the feature embeddings (rt, rtarget). Us-
ing rt, rtarget and the VGM, the memory processor pro-
duces context vectors (ct, ctarget). The memory processor
consists of a graph convolutional network, Fenc, and the
attention networks, Fdec1 and Fdec2. Finally, ct, ctarget and
rt are concatenated and passed to a long short-term memory
(LSTM) network which returns an action at for the agent to
take. Based on the VGM, the agent can efficiently search for
the target location in an unseen environment. In the remain-
der of this section, the components of the proposed naviga-
tion system are described in detail.

3.3. Visual Graph Memory
The memory update module contains a VGM = (V,E),

where V and E represent nodes and edges, respectively. An
adjacency matrix A can be constructed from a VGM. A pre-
trained image encoder Floc encodes the current image ob-
servation ot into et. Floc produces similar representations if
the observations are from similar locations. The node em-
beddings of V are composed of image representations from
past image observations. Based on similarities between the
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Figure 2.33: Overview of the network architecture from (Kwon et al. 2021),
shown are two modules: 1) the memory update model, which builds
a visual graph memory using features extracted from visual ob-
servations. 2) The navigation module which encodes the current
observation and target images, the memory processor looks to asso-
ciate each encoded image with node on the graph. The output of
the memory processor is used as input to a recurrent action policy.
Figure from (Kwon et al. 2021).

map-based approaches aim to incorporate this form of structure in order to
improve their performance in planning and navigation tasks. In (Savinov et al.
2018b) the authors introduce a novel memory architecture for navigation in unseen
environment instances. The work comprises of two components: a parametric
network that is trained to identify graph nodes based on observations and a
non-parametric classical planner. The authors build a graph-based representation
by predicting connectivity between observations and thresholding the predictions
to build a graph. They then use classical planning techniques to estimate paths
to a target location, indicated by an image. They apply this approach to the
task of image-goal navigation. A 5-minute roll-out in the environment is used
to instantiate the graph, which makes it challenging to compare this work to a
memory-based baseline that has not previously observed the environment.

In (Eysenbach et al. 2019a) the authors build a graph-based representation from
data available on the RL agent’s replay buffer. A goal-conditioned value function
allows for the creation of a graph where the edges are the value estimates, using
this approach the authors generate a sequence of intermediate sub-goals for the
agent to navigate to, illustrated in Figure 2.32. The downside of this approach,
as with (Savinov et al. 2018b) is the reliance on the replay buffer dataset, which
restricts the application of this method to environment instances that are available
in the replay buffer. (Chaplot et al. 2020e) builds upon their work in metric maps
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(Chaplot et al. 2020a) to perform image-goal based-navigation in photo-realistic
3D environments. This work exploits graph-based representations, as in the
work of (Savinov et al. 2018b), but has the advantage of building the topological
representation in a on-line dynamic way. Allowing for generalization to new
scenes without the need for an exploratory roll-out. The photo-realistic nature of
the simulator used in this work (Savva et al. 2019b; Szot et al. 2021) enables models
that can extract feature representations based on rich semantic observations. This
allows the model to exploit regularities in the structure and layout of homes that
may not exist in synthetic datasets. The authors also deploy their embodied agent
under noisy actuation, to mimic the challenges of real-world robotic interactions.
The simulated robotic agent is equipped with a 360-degree panoramic camera,
which simplifies the task as the agent can observe in all directions without the
need to interact with the environment.

(Kwon et al. 2021) implement a self-supervised method to learn observation
embeddings for visual representations sampled in photo-realistic environments in
the Habitat simulator. They couple the observation embeddings with an end-to-
end approach to planning and navigation, involving graph neural networks and
a recurrent action policy. The architecture is shown in Figure 2.33. The authors
compare against a number of state of the art approaches (Savinov et al. 2018b;
Chaplot et al. 2020a; Chaplot et al. 2020e; Fang et al. 2019), including our Learning
to Plan with Uncertain Topological Maps publication (Beeching et al. 2020e).

2.10 Conclusions

In this chapter, we have aimed to introduce a foundational knowledge to learning-
based approaches and their applications. We first introduced Supervised Learning
and its application in classification and regression problems. We then describe
methods that learn through interaction with an agent-environment framework,
Reinforcement Learning. The deep learning section provided an overview of
key modules and architectures including Multi-layer perceptrons, convolutional
neural networks, recurrent neural networks, and graph neural networks. We
developed the mathematics of gradient-based learning with back-propagation.
After highlighting some of the applications of Deep Learning we discussed
model-free Deep Reinforcement Learning in on-policy and off-policy settings. We
introduced the Embodied AI environments that have been used and built upon
during the thesis. We then discussed some of the practicalities and limitations
of Deep Reinforcement Learning approaches. After a brief overview of classical
planning and navigation in robotics, we introduced the sub-domain of Structured
Deep Reinforcement Learning and described key contributions and related works.
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In the upcoming five chapters, we introduce five contributions that we have
made during this three-year thesis. We begin with Chapter 3, the creation of a set
of memory-based tasks, baseline agents and analysis of their behaviors.
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D E E P R E I N F O R C E M E N T L E A R N I N G O N A
B U D G E T: 3D C O N T R O L A N D R E A S O N I N G
W I T H O U T A S U P E R C O M P U T E R

Chapter abstract
An important goal of research in Deep Reinforcement Learning in mobile
robotics is to train agents capable of solving complex tasks, which require a
high level of scene understanding and reasoning from an egocentric perspec-
tive. When trained from simulations, optimal environments should satisfy a
currently unobtainable combination of high-fidelity photographic observations,
massive amounts of different environment configurations and fast simulation
speeds. In this chapter we argue that research on training agents capable of
complex reasoning can be simplified by decoupling from the requirement of
high fidelity photographic observations. We present a suite of tasks requir-
ing complex reasoning and exploration in continuous, partially observable
3D environments. The objective is to provide challenging scenarios and a
robust baseline agent architecture that can be trained on mid-range consumer
hardware in under 24h. Our scenarios combine two key advantages: (i) they
are based on a simple but highly efficient 3D environment (ViZDoom) which
allows high speed simulation (12000fps); (ii) the scenarios provide the user
with a range of difficulty settings, in order to identify the limitations of cur-
rent state of the art algorithms and network architectures. We aim to increase
accessibility to the field of Deep-RL by providing baselines for challenging
scenarios where new ideas can be iterated on quickly. We argue that the
community should be able to address challenging problems in reasoning of
mobile agents without the need for a large compute infrastructure. Code for
the generation of scenarios and training of baselines is available online at the
following repository 1.

The work in this chapter has led to the publication of conference paper:

• Edward Beeching, Jilles Dibangoye, Olivier Simonin, and Christian Wolf
(2020a). “Deep Reinforcement Learning on a Budget: 3D Control and
Reasoning Without a Supercomputer.” In: Proceedings of the International
Conference on Pattern Recognition (ICPR);

1https://github.com/edbeeching/3d_control_deep_rl
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Figure 3.1: Agent hidden state analysis. One of the proposed scenarios, called
“Two color correlation”: an agent collects items that are the same color
as a fixed object at the center of the scenario, which can be either red
or green. Left: analysis of the hidden state of a trained agent during
an episode. We observe a large change in the activations of the hidden
state at step 21, when the fixed object is first observed. Top-center: the
agent’s viewpoint at step 0. Bottom-center: the agent’s viewpoint at
step 21, where the agent first observes the fixed object that indicates
the objective of the current task (circled in blue). Right: the positions
of the agent in the environment.

3.1 Introduction

Much of the state of the art research in the field of Deep-RL focuses on problems in
fully observable state spaces such as Atari games or in continuous control tasks in
robotics, with typical work in grasping (Levine et al. 2016b), locomotion (Lillicrap
et al. 2015a), and in joint navigation and visual recognition (Mirowski et al. 2017;
Das et al. 2018). We address the latter category of problems, which have long term
goals and applications in mobile robotics, service robotics, autonomous vehicles
and others. We argue that these problems are particularly challenging, as they
require the agent to solve difficult perception and scene understanding problems
in complex and cluttered environments. Generalization to unseen environments
is particularly important, as an agent should be deployable to a new environment,
for instance an apartment, house or factory, without being retrained, or with
minimal adaptation. In these scenarios, partial observations of the environment
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are received from a first person viewpoint. 3D environments require solving the
problems of vision, reasoning and long term planning, and are often less reactive
than the Atari environments.

The current state of the art Deep RL algorithms are data hungry, as complex
scenarios that necessitate high-level reasoning require hundreds of millions of
interactions with the environment in order to converge to a reasonable policy.
Even with more sample efficient algorithms such as PPO (Schulman et al. 2017b),
TRPO (Wu et al. 2017) or DDPG (Lillicrap et al. 2015a) the sample efficiency is
still in the tens of millions. Therefore, even though the question of whether to
learn from real interactions or simulated ones is still open, there seems to be a
consensus that learning from simulations is currently required at least in parts
in order to have access to large scale and high-speed data necessary to train
high-capacity neural models. In this respect, an optimal simulated environment
should have the following properties: (i) relatively complex reasoning should be
required to solve the tasks; (ii) the simulated observations are of high-fidelity /
photo-realistic, which makes it easier to transfer policies from simulation to real
environments; (iii) large-scale, in a sense that the amount of settings (apartments
or houses for home robotics) can be varied. The learned policy should generalize
to unseen environments and not encode any particular spatial configuration; (iv)
high simulation speed is required in order to train agents on a massive amount
of interactions in a relatively short time.

Unfortunately most of these goals are contradictory. In the past two years many
realistic environments have been proposed that offer proxy robotic control tasks.
Many of these simulators allow photo-realistic quality rendering but unfortunately
only provide a low amount of configurations (apartments) and are slow to simulate
even at the lowest of resolutions (Brodeur et al. 2018), (Savva et al. 2017), (Kolve
et al. 2017b). This has led to a push to run simulation in parallel on hundreds of
CPU cores.

In this work, we argue that an important step in current research is training
agents which are capable of solving tasks requiring fairly complex reasoning,
navigation in 3D environments from egocentric observations, interactions with a
large amount of objects and affordances etc. Transfer of learned policies to the
real world, while certainly being important, can arguably explored in parallel for
a large part of our work (as a community). We therefore propose set of highly
configurable tasks which can be procedurally generated, while at the same time
providing highly efficient simulation speed (see Fig. 4.1 for an example). The
work presented aims to be a starting point for research groups who wish to apply
Deep RL to challenging 3D control tasks that require understanding of vision,
reasoning and long term planning, without investing in large compute resources.

We also provide a widely used training algorithm and benchmarks that can
be trained on mid-range hardware, such as 4 CPU cores and a single mid-range
GPU (K80, Titan X, GTX 1080), within 24 hours. We provide benchmark results
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Table 3.1: Comparison of the first person 3D environment simulators available
in the RL community. Frames per second (FPS) is shown for a single
CPU core.

Simulator Difficulty Duration Extendable Realistic Scenarios FPS
VizDoom(Kempka et al. 2017) Simple Short 3 7 8 3000+
Deepmind Lab(Beattie et al. 2016b) Complex Long 3 7 30 200+
HoME(Brodeur et al. 2018) Simple Short 7 3 45000 200+
Habitat(Savva et al. 2019b) Simple + text Short 7 3 45662 200+
Minos(Savva et al. 2017) Simple Short 7 3 90 100+
Gibson(Xia et al. 2018) Simple + text Short 7 3 572 50+
Matterport(Anderson et al. 2018b) Simple + text Short 7 3 90 10+
AI2-thor(Kolve et al. 2017b) Simple Short 7 3 32 10+

for each scenario in a number of different difficulty settings and identify where
there are areas for improvement for future work. We evaluate the generalization
performance of the agents on unseen test scenario configurations.

To summarize, we present the following contributions:

• A benchmark suite of proxy tasks for robotics, which require cognitive reasoning
while at the same time being computationally efficient. The scenarios have been
built on top of the ViZDoom simulator (Kempka et al. 2017) and run at 12,000

environment interactions per second on limited compute, or 9,600 per second
including the optimization of the agent’s policy network.

• A baseline agent, which solves the standard ViZDoom tasks and is benchmarked
against our more challenging and diverse scenarios of varying difficulty settings.

• Experiments that demonstrate generalization performance of an agent in unseen
scenario configurations.

• An analysis of the activation’s in the hidden state of a trained agent during an
episode.

This chapter is structured as follows: section 7.2 discusses the advantages and
limitations of simulators available in Deep RL, pre-existing benchmarks and
recent analyses of the instability and generalization performance of RL. Section
3.3 describes each scenario and the reasoning we expect the agent to acquire. In
section 3.4 we describe the baseline agent’s architecture, key components of the
training algorithm and the experimental strategy. Results and analysis are shown
in section 3.5 and conclusions made in section 3.6.

3.2 Related Work

Deep Reinforcement Learning — In recent years the field of Deep Reinforcement
Learning (RL) has gained attention with successes on board games (Silver et al.
2016a) and Atari Games (Mnih et al. 2015b). One key component was the applica-
tion of deep neural networks (Lecun et al. 1998) to frames from the environment or
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game board states. Recent works that have applied Deep RL for the control of an
agent in 3D environments such as maze navigation are (Mirowski et al. 2017) and
(Jaderberg et al. 2016a) which explored the use of auxiliary tasks such as depth
prediction, loop detection and reward prediction to accelerate learning. Meta
RL approaches for 3D navigation have been applied by (Wang et al. 2016a) and
(Lample et al. 2017b) also accelerated the learning process in 3D environments by
prediction of tailored game features. There has also been recent work in the use of
street-view scenes in order train an agent to navigate in city environments (Kay-
alibay et al. 2018). In order to infer long term dependencies and store pertinent
information about the environment; network architectures typically incorporate
recurrent memory such as Gated Recurrent Units (Chung et al. 2015a) or Long
Short-Term Memory (Hochreiter et al. 1997b).
The scaling of Deep RL has produced some impressive results, such as in the
IMPALA(Espeholt et al. 2018a) architecture which successfully trained an agent
that can achieve human level performance in all 30 of the 3D partially observable
DeepMind Lab (Beattie et al. 2016b) tasks; accelerated methods such as in (Stooke
et al. 2018) which solve many Atari environments in tens of minutes and the
recent achievement in long term planning on the game of Dota by the OpenAI5
(OpenAI 2018) system have shown that Deep RL agents can be trained with long
horizons and a variety of settings. All of these systems represent the state of the
art in the domain of Deep RL, the downside is that the hardware requirements
required to train the agents make this level of research prohibitive for all but the
largest of institutions.

Environments — Beyond the environments available in the Gym framework
(Brockman et al. 2016) for Atari and continuous control tasks, there are numerous
3D simulators available with a range advantages and disadvantages. Before
starting this work, we investigated the limitations of each simulator, which are
summarized in table 3.1, as we focus on proxies for in home mobile robots we
exclude comparisons with car and drone simulators such as CARLA (Dosovitskiy
et al. 2017) and Sim4CV (Müller et al. 2017). In choosing the simulator, speed was
of utmost importance as we did not want to starve the GPU of data. The fidelity
and realism of the simulator was not of great concern, as the intention was to run
the simulator at a low resolution where fine detail cannot be captured. We chose
ViZDoom as it is orders of magnitude faster than its competitors. The downside
of ViZDoom is that there are only 8 scenarios available which are limited in scope
and cannot be used to evaluate the generalization performance of an agent. For
this reason we have constructed an ever growing collection of scenarios that aim
to test navigation, reasoning and memorization. Four of the scenarios have been
included in the proposed benchmark.

Other benchmarks — There are a number of open source benchmark results
and libraries available in the field of Deep RL. The most popular being OpenAI
baselines (Dhariwal et al. 2017) which focuses on the Atari and Mujuco continuous
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Figure 3.2: Generalization to unseen maze configurations The average return
and std. of three separate experiments trained on the labyrinth scenario
with training set sizes of 16, 64, 256 and 1024 mazes, evaluated on the
training set (left) and a held out set of 64 mazes (right). We observe
that the training sets of size 16 and 64 quickly overfit to the training
data and their generalization performance initially improves and then
degrades over time. With 256 and 1024 maze configurations, the
agent’s test set performance plateaus at the same level.

control tasks. There are several libraries which such as Ray (Moritz et al. 2017) and
TensorForce (Schaarschmidt et al. 2017) that provide Open Source implementations
of many RL algorithms. Unfortunately these implementations are applied in
environments such Atari and Mujuco continuous control and standard benchmark
results are not available for Deep RL applied in 3D environments.

To our knowledge, the most similar open-source benchmark of Deep RL applied
to 3D scenarios is IMPALA (Espeholt et al. 2018a). Although an impressive feat
of engineering, the downside of this solution is the high compute requirement
with parallel environments running on up to 500 compute cores. Our scenarios
provide comparable levels of reasoning and run on limited hardware due a highly
optimized simulator.
Algorithmic instability and generalization — In the last year work has been
published on the analysis of the generalization and the often under-documented
challenge of algorithmic stability in the field of Deep RL. Much of the focus in
Deep RL is training an agent to master a specific task, which is in contrast to
supervised learning where data is held out in order to evaluate the performance
on similar but unseen data drawn for the same underlying distribution. Recent
work has studied over-fitting in Deep RL in 2D gridworld scenarios (Zhang et al.
2018) which motivated us to repeat similar experiments in 3D scenarios with
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Figure 3.3: Training curves for the ViZDoom standard scenarios. Shown are
the mean and standard deviation for three independent experiments
conducted for each scenario.

separate training and test datasets. An experimental study (Henderson et al. 2018)
highlights the sensitivity of Deep RL to weight initialization and hyper parameter
configurations which are often overlooked when results are discussed. In the
benchmark details section, we explicitly state our training strategy and evaluation
procedures.

3.3 Scenarios and required reasoning

We have designed scenarios that aim to:
Be proxies for mobile robotics — the tasks represent simplified versions of real
world tasks in mobile and service robotics, where an agent needs to act in an ini-
tially unknown environment, discovering key areas and objects. This also requires
the tasks to be partially observable and to provide 3D egocentric observations.
Test spatial reasoning — the scenarios require the agent to explore the envi-
ronment in an efficient manner and to learn spatial-temporal regularities and
affordances. The agent needs to autonomously navigate, discover objects, eventu-
ally store their positions for later use if they are relevant, their possible interactions,
the eventual relationships between the objects and the task at hand. Semantic
mapping is a key feature in these scenarios.
Discover semantics from interactions — while solutions exist for semantic map-
ping and semantic SLAM (Civera et al. 2011a), we are interested in tasks where
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Figure 3.4: Two scenarios ”Find and return” and ”Ordered K−item”. Left: The
”Find and return” scenario showing an agent’s egocentric viewpoint
and a top down view, the agent must start at the green object, find the
red object and then return to the starting point. Right: The ”Ordered
K−item” scenario, where the agent must collect 4 items in order.

the semantics of objects and their affordances are not supervised, but defined
through the task and thus learned from reward.
Generalize to unseen environments — related to being proxies for robotics, the
trained policies should not encode knowledge about a specific environment con-
figuration2. The spatial reasoning capabilities described above should thus be
learned such that an agent can make a difference between affordances, which
generalize over configurations, and between spatial properties which need to be
discovered in each instance/episode. We thus generate a large number of different
scenarios in a variety of configurations and difficult settings and split them into
different subsets, evaluating the performance on test data.

We propose a set of four tasks called “Labyrinth”, “Find and return”, “Ordered K-
item” and “Two color correlation”. They are build on top of the ViZDoom simulator
(Kempka et al. 2017) and involve an agent moving in a maze with various objects.
They have continuous partially observable state spaces with a discrete action space
including {forward, backward, turn left, turn right,. . .}. The mazes were generated
with a depth first search, further interconnections were added by randomly
removing 40% of the walls. For the two color scenario the percentage of walls
removed was varied in order to evaluate performance with changing scenario
complexity. For each scenario, 256 configurations were used for training and 64

for testing. This was determined with a study on the labyrinth scenario (described
in section 3.3) with the baseline agent described in section 3.4. We concluded that
256 scenarios are sufficient to train a general policy, shown in Fig. 3.2.

We chose to run the simulator at a resolution of size 64×112 (h×w), which is
comparable in size to the state of the art (Espeholt et al. 2018a) of 72×96. We
observed that a wider aspect ratio increases the field of view of the agent and
enables each observation to provide more information about the environment for
a similar pixel budget. We run the same architeture and hyperparameter settings
on the standard ViZDoom scenarios, results are shown in Figure 3.3.

2In service robotics we require a robot to work in an unseen home.
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Figure 3.5: The benchmark agent’s architecture

Labyrinth — The easiest scenario, labyrinth, tests the ability of an agent to
efficiently explore an environment and learn to recognize an exit object. A typical
maze scenario, with wall configurations created with procedural generation.
Rewards are sparse with long time dependencies between actions and rewards.
Objective: Find the exit of a randomly generated maze of size n×n in the shortest
time. Reward: +1 for finding the exit, -0.0001 for each time-step, limited to 2100

steps.

Find and return — A general and open source implementation of the “Minotaur”
scenario detailed in (Parisotto et al. 2017b), it tests the spatial reasoning of an agent
by encouraging it to store in it’s hidden state the configuration of an environment,
so that it can quickly return to the starting point once the intermediate object
has been discovered (see Fig. 3.4). Objective: Find an object in a maze and then
return to the starting point. Reward: +0.5 for finding the object, +0.5 for return to
the starting point, -0.0001 for each time-step, limited to 2100 steps.

Ordered k-item — In this more challenging scenario, an agent must find K
objects in a fixed order. It tests three aspects of an agent, it’s ability to: explore the
environment in an efficient manner, learn to collect items in a predefined order
and store as part of it’s hidden state where items were located so they can be
retrieved in the correct order. Shown in Fig. 3.4. Objective: Collect k items in a
predefined order. Reward: +0.5 for finding an object in the right order, -0.25 for
finding an object in the wrong order, which also ends the scenario, -0.0001 for
each time-step, limited to 2100 steps.

Two color correlation — Potentially the most challenging of the scenarios, here
the agent must infer the correlation between a large red or green colored object
in the scenario and the correct items to collect. The scenario tests an agent’s
ability to explore the environment quickly in order to identify the current task and
then to store the current task in it’s hidden state for the duration of the scenario.
Objective: Collect the correct color objects in a maze full of red and green objects,
the task is to pick up the object which is the same color as a totem at the centre of
the environment. The agent also starts with 100 health, collecting the correct item
increases health by 25, collecting the wrong item decreases the agent’s health by
25, if the agent’s health is below 0, the scenario is reset. The agent’s health also
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Figure 3.6: Results from the ”Labyrinth” scenario. Environments of sizes
[7, 9, 11, 13], three experiments were conducted per size. Shown are
the mean and std. of the percentage of successful episodes evaluated
on the training data (left) and the test data (right). The performance of
the benchmark agent diminishes as the size of the scenario increases.

decays by 1 each time-step to encourage exploration. Reward: +0.1 for the correct
item, -0.01 per time-step.

3.4 Benchmark agent details

We apply a popular model-free policy gradient algorithm, Advantage Actor Critic
(A2C) (Mnih et al. 2016c), implemented in the PyTorch framework by (Kostrikov
2018). A2C optimizes the expected discounted future return Rt = ∑T

t′=t γt−t′rt′

over trajectories of states st, action at and reward rt triplets collected during
rollouts of a policy in the environment. The algorithm achieves this by optimizing
a policy π(.|st; θ) and a value function Vπ(st; θ). Both the policy and value
function are represented by neural networks with shared parameters θ that are
optimized by gradient descent.

The A2C algorithm is an extension of REINFORCE (Williams 1992a) where the
variance of the updates are reduced by weighting by the advantage A(a, st)=Rt−V(st).
The objective function that is optimized is detailed in equation 3.1, the λ factor
weights the trade-off between the policy and value functions, and is typically 0.5
for most A2C implementations.

L(θ) = − log π(at|st; θ)A(at, st) + λ(Rt −V(st; θ))2 (3.1)
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Table 3.2: Summary of results on the training and test sets for the four scenar-
ios in a variety of difficulty settings.

Labyrinth Ordered K-item
Size Train Test # items Train Test

7 99.8 ± 0.2 99.5 ± 0.2 2 0.968 ± 0.004 0.932 ± 0.012

9 98.1 ± 0.8 97.4 ± 1.3 4 0.910 ± 0.012 0.861 ± 0.015

11 95.2 ± 0.7 90.1 ± 1.0 6 0.577 ± 0.024 0.522 ± 0.023

13 84.1 ± 1.8 79.8 ± 1.9 8 0.084 ± 0.071 0.083 ± 0.070

Find Return Two colors
Size Train Test Complexity Train Test

7 98.7 ± 0.3 95.1 ± 0.2 1 1903 ± 27 1941 ± 4

9 87.0 ± 1.9 81.6 ± 1.8 3 1789 ± 24 1781 ± 24

11 70.9 ± 1.6 64.0 ± 1.6 5 1436 ± 158 1432 ± 161

13 57.7 ± 0.8 52.9 ± 3.7 7 1159 ± 126 1128 ± 140

An optional entropy term is included to encourage exploration by penalizing
peaky, low entropy distributions. We found the weighting of the entropy term to
be key during hyper-parameter tuning.

The algorithm was run in a batched mode with 16 parallel agents sharing
trajectories of over 128 environment steps, with discounted returns bootstrapped
from value estimates for non-terminal states. The forward and backward passes
were batched and computed on a GPU for increased efficiency. The downside
of this setup is that the slowest simulator step will bottleneck the performance,
as the chosen simulator is exceptionally fast we found in practice that this did
not have a large impact. We achieved a rate of training of approximately 9,200

environment frames per second. This includes a 4 step frame skip where physics
are simulated but the environment is not rendered, so on average we simulate and
process 2,300 observations per second. The training efficiency was benchmarked
on Xeon E5-2640v3 CPUs, with 16GB of memory and one NVIDIA GK210 GPU.
The benchmark agent’s network architecture is a 3 layer CNN similar to that used
in (Mnih et al. 2015b) with 128 GRU to capture long term information, shown
in Fig. 3.5. Three independent experiments were undertaken for each scenario
and difficulty combination in order to evaluate algorithmic stability. Agents were
trained for 200M observations from the environment, which is equal to 800M steps
with a frame skip of 4. For the more complex variants of the scenarios we do not
train the networks to convergence, as training was capped at 200M observations.

All experiments were conducted with the same hyper-parameter configuration,
which was observed to be stable for all 4 custom scenarios and also the default
scenarios provided with the ViZDoom environment. The hyper-parameters were
chosen after a limited sweep across learning rate, gamma factor, entropy weight
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Figure 3.7: Results from the ”Find and return” scenario. Maps of sizes
[5, 7, 9, 11, 13], three experiments were conducted per size. Displayed
are the mean and std. of the percentage of successful episodes evalu-
ated on training data (left) and test data (right).

and n-step length (the number of environment steps between network updates)
on the labyrinth scenario. Weights were initialized with orthogonal initialization
and the appropriate gain factor was applied for each layer.

3.5 Results and Analysis

For each scenario there are a variety of possible difficulty settings. We have
explored a range of simple to challenging configuration options and evaluated the
agent’s performance when trained for 200 M observations from the environment.

For each possible sub-configuration, 3 independent experiments were conducted
with different seeds for the weight initialization in order to get an estimate of
the stability of the training process. Results of the agent’s mean performance
on training and test datasets are shown with errors of one standard deviation
across the 3 seeds. A summary of all results is included in table 6.1. For each
plot in the next section, we show a measure of the agent’s performance such as
average return or percentage of successful episodes on the y-axis and the number
of environment frames on the x-axis.
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Figure 3.8: Results from the ”Ordered k-item” scenario. For k ∈ [2, 4, 6, 8], three
experiments were undertaken for each k. Shown are the mean and
std. of the item-normalized average return of the agent evaluated
on the training (left) and testing (right) sets. The 6-item scenario is
challenging and the 8-item is too difficult for the baseline agent, these
are good scenarios to compare future work.

3.5.1 Results

Labyrinth: Experiments were conducted on 4 sizes of the find and return scenario
ranging from 7x7 to 13x13, results of the agent’s performance shown in Fig. 3.6.
We observe that the performance of the benchmark plateaus near to the optimal
policy for the scenarios of size 7 and 9. Reasonable performance is achieved with
the size 9 scenario and performance is reduced for the size 13 scenario, which is
challenging for the agent.

Find and return: Experiments were conducted on 5 sizes of the find and return
scenario ranging from 5x5 to 13x13, results of the agent’s performance are shown
in Fig. 3.7. We observe reasonable agent performance on the smaller scenario
configurations and scenarios of size 11+ are currently challenging.

Ordered k-item Experiments were conducted on 4 different scenarios of a fixed
size of 5x5 with 2,4,6 and 8 items, results of the agent’s performance are shown in
Fig. 3.8. Here, the more critical parameter is the number K of items to be retrieved
in correct order. For the 2 and 4-item scenario configurations, we observe that the
policies plateau near to the optimal policy, the benchmark agent struggles with
the 6-item scenario and fails on the 8-item scenario.
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Figure 3.9: Results from the ”Two color correlation” scenario for four difficulty
settings, three experiments were performed for each setting. Shown are
the mean and std. of the agent’s average duration in the environment
when evaluated on training (left) and testing (right) datasets.

Two color correlation: Experiments were conducted on 4 different scenarios of a
fixed size of 5x5 with increasing environment complexity, results of the agent’s
performance are shown in Fig. 3.9. We observe for the less complex scenarios
with 10 or 30% of the walls retained, the agent’s performance plateaus near the
optimal policy. The policies learned on more complex scenarios require further
improvement and would be good places to test agent architectures and auxiliary
losses.

3.5.2 Analysis and Discussion

To provide insight into the decision making process of the agent, we conducted
an analysis of the activations in a trained agent’s architecture over episodes in the
two color correlation scenario. In Fig. 4.1, page 82, we show an analysis of the
progression of the agent’s hidden state during the first 64 steps in the environment.
We observe a large change in the hidden state at step 21, further analysis indicates
this is the first time the agent observes the indicator object that identifies the
task objective. When the totem is observed there are many boolean flags of the
hidden state that are switched on and off, which modifies the agent’s behavior
policy. This is an example of an agent that has learned to explore, reason and
store information, purely from a weak reward signal.
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Figure 3.10: T-SNE analysis of agent’s hidden state, sampled from 100 episodes
in the “Two color correlation” scenario. Each point is a 2D represen-
tation of one hidden state activation, the color is the time-step, grey
lines connect 20 independent trajectories. Once the indicator item has
been discovered the policy transitions from an exploration policy to a
one of two policies associated with the green task or the red task.

We conducted further analysis by collecting trajectories on hidden states vectors
from 100 rollouts of the trained policy, dimensionality reduction was applied
using T-SNE (Van Der Maaten et al. 2008) on 2000 hidden state vectors selected
from a random permutation of the collected trajectories. We identify 3 separate
groups of hidden state vectors, shown in Fig. 3.10. Further analysis indicated that
there are three sub-policies that the agent has learned for this scenario; i) an initial
policy which explores the environment to identify the color of the task, which
transitions to either ii) a policy that collects red items in the case of the red task or
iii) a policy that collects green items.

Challenges in spatial reasoning — the experiments on our proposed suite of
benchmarks indicate that current state of the art models and algorithms still
struggle to learn complex tasks, involving several different objects in a different
places, and whose appearance and relationships to the task itself need to be
learned from reward. The difficulty of the proposed scenarios can be adjusted,
to scale the task to different levels of required reasoning. For instance, while
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the ordered K− items scenario is solvable for up to 4 items, it rapidly becomes
challenging when the number of items or the size of the environment is increased.

3.6 Conclusions

We have presented four scenarios that require exploration and reasoning in 3D
environments. The scenarios can be simulated at a rate that exceeds 12,000 FPS
(frame skip=4) on average, including environment resets. Training can be done
up to 9,200 FPS (frame skip=4), including forward and backward passes.

Experiments have been conducted for each scenario for a wide variety of diffi-
culty settings. We have shown robust agent performance across random weight
initialization for a fixed set of hyper-parameters. Generalization performance
has been analyzed on held out test data, which demonstrates the ability of the
benchmarks to generalize to unseen environment configurations that are drawn
from the same general distribution. We have highlighted limitations of a typical
RL baseline agent and have identified suitable scenarios for future research.

Code for the scenarios, benchmarks and training algorithms is available online1,
with detailed instructions of how to reproduce this work.

In this chapter, we have created a set of benchmark environments and quantified
the limitations of an unstructured end-to-end baseline agent. In the next chapter,
we will demonstrate that structured agent architecture can improve performance,
sample efficiency and interpretability, in a wide variety of memory-based tasks.
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Chapter abstract

Tasks involving localization, memorization and planning in partially ob-
servable 3D environments are an ongoing challenge in Deep Reinforcement
Learning. In this chapter we present EgoMap, a spatially structured neu-
ral memory architecture. EgoMap augments a deep reinforcement learning
agent’s performance in 3D environments on challenging tasks with multi-step
objectives. The EgoMap architecture incorporates several inductive biases
including a differentiable inverse projection of CNN feature vectors onto a
top-down spatially structured map. The map is updated with ego-motion
measurements through a differentiable affine transform. We show this ar-
chitecture outperforms both standard recurrent agents and state of the art
agents with structured memory. We demonstrate that incorporating these
inductive biases into an agent’s architecture allows for stable training with
reward alone, circumventing the expense of acquiring and labelling expert
trajectories. A detailed ablation study demonstrates the impact of key aspects
of the architecture and through extensive qualitative analysis, we show how the
agent exploits its structured internal memory to achieve higher performance.
The work in this chapter has led to the publication of conference paper:

• Edward Beeching, Jilles Dibangoye, Olivier Simonin, and Christian Wolf
(2020c). “EgoMap: Projective mapping and structured egocentric memory
for Deep RL”. in: Proceedings of the European Conference on Machine Learning
and Knowledge Discovery in Databases (ECML-PKDD).

4.1 Introduction

A critical part of intelligence is navigation, memory and planning. An animal
that is able to store and recall pertinent information about their environment is
likely to exceed the performance of an animal whose behavior is purely reactive.
Many control problems in partially observed 3D environments involve long
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Figure 4.1: Overview of the mapping module (left) and EgoMap agent architec-
ture (right). Visual features are mapped to the top-down egocentric
map. Observations from a first-person viewpoint are passed through
a perception module, extracted features are projected with the inverse
camera matrix and depth buffer to their 3D coordinates. The opera-
tions are implemented in a differentiable manner, so derivatives can
be back-propagated to update the weights of the perception module.
Our model learns to unproject learned task-oriented semantic embed-
dings of observations and to map the positions of relevant objects
in a spatially structured (bird’s eye view) neural memory, where dif-
ferent objects in the same input image are stored in different map
locations. Using the ego-motion of the agent, the map is updated by
differentiable affine resampling at each step in the environment.

term dependencies and planning. Solving these problems requires agents to
learn several key capacities: spatial reasoning — to explore the environment in
an efficient manner and to learn spatio-temporal regularities and affordances.
The agent needs to autonomously navigate, discover relevant objects, store their
positions for later use, their possible interactions and the eventual relationships
between the objects and the task at hand. Semantic mapping is a key feature in
these tasks. A second feature is discovering semantics from interactions — while
solutions exist for semantic mapping and semantic SLAM (Civera et al. 2011b;
Tateno et al. 2017), a more interesting problem arises when the semantics of objects
and their affordances are not supervised, but defined through the task and thus
learned from reward.

A typical approach for these types of problems are agents based on deep
neural networks including recurrent hidden states, which encode the relevant

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI038/these.pdf 
© [E. Beeching], [2022], INSA Lyon, tous droits réservés



4.1 introduction 83

information of the history of observations (Mirowski et al. 2017; Jaderberg et
al. 2016a). If the task requires navigation, the hidden state will naturally be
required to store spatially structured information. It has been recently reported
that spatial structure as inductive bias can improve the performance on these tasks.
In (Parisotto et al. 2018), for instance, different cells in a neural map correspond
to different positions of the agent.

In our work, we go beyond structuring the agent’s memory with respect to
the agent’s position. We use projective geometry as an inductive bias to neural
networks, allowing the agent to structure its memory with respect to the locations
of objects it perceives, as illustrated in Figure 4.1. The model performs an inverse
projection of CNN feature vectors in order to map and store observations in
an egocentric spatially structured memory. The EgoMap is complementary to
the hidden state vector of the agent and is read with a combination of a global
convolutional read operation and an attention model allowing the agent to query
the presence of specific content. We show that incorporating projective spatial
memory enables the agent to learn policies that exceed the performance of a
standard recurrent agent. Two different objects visible in the same input image
could be at very different places in the environment. In contrast to (Parisotto et al.
2018), our model maps these observations to their respective locations, and not to
cells corresponding to the agent’s position, as shown in Figure 4.1.

The model bears a certain structural resemblance with Bayesian occupancy
grids (BOG), which have been used in mobile robotics for many years (Moravec
1989; Rummelhard et al. 2015). As in BOGs, we perform inverse projections
of observations and dynamically resample the map to take into account ego-
motion. However, in contrast to BOGs, our model does not require a handcrafted
observation model and it learns semantics directly from interactions with the
environment through reward. It is fully differentiable and trained end-to-end
with backpropagation of derivatives calculated with policy gradient methods. Our
contributions are as follows:

• To our knowledge, we present the first method using a differentiable SLAM-
like mapping of visual features into a top-down egocentric feature map using
projective geometry while training this representation using RL from reward.

• Our spatial map can be translated and rotated through a differentiable affine
transform and read globally and through self-attention.

• We show that the mapping, spatial memory and self-attention can be learned
end-to-end with RL, avoiding the cost of labelling trajectories from domain
experts, auxiliary supervision or pre-training specific parts of the architecture.

• We demonstrate the improvement in performance over recurrent and spatial
structured baselines without projective geometry.

• We illustrate the reasoning abilities of the agent by visualizing the content
of the spatial memory and the self-attention process, tying it to the different
objects and affordances related to the task.
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• Experiments with noisy actions demonstrate the agent is robust to actions
tolerances of up to 10%.

4.2 Related Work

Reinforcement learning — In recent years the field of Deep Reinforcement Learn-
ing (RL) has gained attention with successes on board games (Silver et al. 2018)
and Atari games (Mnih et al. 2015c). One key component was the application
of deep neural networks (Lecun et al. 1998) to frames from the environment or
game board states. Recent works that have applied Deep RL for the control of an
agent in 3D environments such as maze navigation are (Mirowski et al. 2017) and
(Jaderberg et al. 2016a) which explored the use of auxiliary tasks such as depth
prediction, loop detection and reward prediction to accelerate learning. Meta
RL approaches for 3D navigation have been applied by (Wang et al. 2016a) and
(Lample et al. 2017b) also accelerated the learning process in 3D environments by
prediction of tailored game features. There has also been recent work in the use
of street-view scenes to train an agent to navigate in city environments (Mirowski
et al. 2018a). In order to infer long term dependencies and store pertinent informa-
tion about the partially observable environment; network architectures typically
incorporate recurrent memory such as Gated Recurrent Units (Chung et al. 2015a)
or Long Short-Term Memory (Hochreiter et al. 1997b).

Differentiable memory — Differentiable memory such as Neural Turing Ma-
chines (Graves et al. 2014) and Differential Neural Computers (DNC) (Graves
et al. 2016) have shown promise where long term dependencies and storage are
required. Neural Networks augmented with these memory structures have been
shown to learn tasks such as copying, repeating and sorting. Some recent works
for control in 2D and 3D environments have included structured memory-based
architectures and mapping of observations. Neural SLAM (Zhang et al. 2017c)
aims to incorporate a SLAM-like mapping module as part of the network archi-
tecture, but uses simulated sensor data rather than RGB observations from the
environment, so the agent is unable to extract semantic meaning from its obser-
vations. The experimental results focus on 2D environments and the 3D results
are limited. Playing Doom with SLAM augmented memory (Bhatti et al. 2016a)
implements a non-differentiable inverse projective mapping with a fixed feature
extractor based on Faster-RCNN (Ren et al. 2015), pre-trained in a supervised
manner. A downside of this approach is that the network does not learn to extract
features pertinent to the task at hand as it is not trained end-to-end with RL.
(Fang et al. 2019) replace recurrent memory with a transformer ((Vaswani et al.
2017a)) attention distribution over previous observation embeddings, to highlight
that recurrent architectures can struggle to capture long term dependencies. The
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downside is the storage of previous observations grows linearly with each step in
the environment and the agent cannot chose to discard redundant information.
Grid cells — there is evidence that biological agents learn to encode spatial
structure. Rats develop grid cells, which fire at different locations with different
frequencies and phases, a discovery that led to the 2014 Nobel prize in medicine
(O’Keefe et al. 1971; Hafting et al. 2005). A similar structure emerges in artificial
neural networks trained to localize themselves, discovered independently by two
different research groups (Cueva et al. 2018; Banino et al. 2018).
Projective geometry and spatial memory — Our work encodes spatial structure
as additional inductive bias. We argue that projective geometry is a strong law
imposed on any vision system working from egocentric observations, justifying a
fully differentiable model of perception. To our knowledge, we present the first
method which uses projective geometry as inductive bias while at the same time
learning spatial semantic features with RL from reward.

The past decade has seen an influx of affordable depth sensors. This has led to
a many works in the domain reconstruction of 3D environments, which can be
incorporated into robotic systems. Seminal works in this field include (Izadi et al.
2011) who performed 3D reconstruction scenes using a moving Kinect sensor and
(Henry et al. 2014) who created dense 3D maps using RGB-D cameras.

Neural Map (Parisotto et al. 2018) implements a structured 2D differentiable
memory which was tested in both egocentric and world reference frames, but does
not map observations in a SLAM-like manner and instead stores a single feature
vector at the agent’s current location. The agent’s position is also discretized to
fixed cells and orientation quantized to four angles (North, South, East, West).
A further downside is that the movement of the memory is fixed to discrete
translations and the map is not rotated to the agent’s current viewpoint.

MapNet (Henriques et al. 2018b) includes an inverse mapping of CNN features,
trained in a supervised manner to predict x,y position and rotation from human
trajectories, but does not use the map for control in an environment. Visual
Question Answering in Interactive Environments (Gordon et al. 2018) creates
semantic maps from 3D observations for planning and question answering and is
applied in a discrete state space.

Unsupervised Predictive Memory in a Goal-Directed Agent (Wayne et al. 2018a)
incorporates a DNC in an RL agent’s architecture and was applied to simulated
memory-based tasks. The architecture achieves improved performance over a
typical LSTM (Hochreiter et al. 1997b) based RL agent, but does not include spatial
structure or projective mapping. In addition, visual features and neural memory
are learned through the reconstruction of observations and actions, rather than
for a specific task.

Cognitive Mapping and Planning for Visual Navigation (Gupta et al. 2017b)
applies a differentiable mapping process on 3D viewpoints in a discrete grid-
world, trained with imitation learning. The downside of discretization is that

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI038/these.pdf 
© [E. Beeching], [2022], INSA Lyon, tous droits réservés



86 egomap : projective mapping and structured egocentric memory for deep rl
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Semantic mapping (Civera et al. 2011b) 3 7 7 7 3 7 3 7 3 3 7 3 3 7 7

Playing Doom with SLAM (Bhatti et al. 2016a) 3 7 3 7 3 7 3 7 3 3 7 3 3 7 7

Neural SLAM (Zhang et al. 2017c) 7 7 3 7 7 7 3 3 3 7 3 7 7 3 7

Cog. Map (Gupta et al. 2017b) 7 7 7 3 3 7 3 3 7 7 3 3 7 3 7

Semantic SLAM (Tateno et al. 2017) 3 7 7 7 3 7 3 7 3 3 7 3 3 7 7

IQA (Gordon et al. 2018) 7 7 3 3 3 7 3 7 7 7 7 7 7 7 7

MapNet (Henriques et al. 2018b) 3 7 7 7 3 7 3 7 3 3 3 3 3 3 7

Neural Map (Parisotto et al. 2018) 7 3 3 7 3 3 3 3 3 7 3 7 7 3 7

MERLIN (Wayne et al. 2018a) 7 7 3 7 3 3 7 7 3 7 3 3 3 3 7

Learning exploration policies (Chen et al. 2019a) 3 7 3 3 3 7 3 7 3 3 7 3 3 3 3

EgoMap 3 3 3 7 3 3 3 3 3 3 3 3 3 3 7

affine sampling is trivial for rotations of 90-degree increments, and this motion is
not representative of the real world. Their tasks are simple point-goal problems of
up to 32 time-steps, whereas our work focused on complex multi-step objectives
in a continuous state space. Their reliance on imitation learning highlights the
challenge of training complex neural architectures with reward alone, particular
on tasks with sparse reward such as the ones presented in this chapter.

Learning Exploration Policies for Navigation (Chen et al. 2019a), do not learn a
perception module but instead map the depth buffer to a 2D map to provide a
map-based exploration reward. Our work learns the features that can be mapped
so the agent can query not only occupancy, but task-related semantic content.

Our work greatly exceeds the performance of Neural Map (Parisotto et al. 2018),
by embedding a differentiable inverse projective transform and a continuous
egocentric map into the agent’s network architecture. The mapping of the environ-
ment is in the agent’s reference frame, including translation and rotation with a
differentiable affine transform. We demonstrate stable training with reinforcement
learning alone, over several challenging tasks and random initializations, and
do not require the expense of acquiring expert trajectories. We detail the key
similarities and differences with related work in table 4.1.

4.3 EgoMap

We consider partially observable Markov decision processes (POMDPs) (Kaelbling
et al. 1998) in 3D environments and extend recent Deep-RL models, which include
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a recurrent hidden layer to store pertinent long term information (Mirowski et al.
2017; Jaderberg et al. 2016a). In particular, RGBD observations It at time step t
are passed through a perception module extracting features st, which are used to
update the recurrent state:

st = fp(It; θp) ht = fr(ht−1, st; θr) (4.1)

where fp is a convolutional neural network and fr is a Gated Recurrent Unit
(Chung et al. 2015a). Gates and their equations have been omitted for simplicity.
Above and in the rest of this chapter, θ∗ are trainable parameters, exact architec-
tures are provided in the appendix. The controller outputs an estimate of the
policy (the action distribution) and the value function given its hidden state:

πt = fπ(ht; θπ) vt = fv(ht; θv) (4.2)

The proposed model is motivated by the regularities which govern 3D physical
environments. When an agent perceives an observation of the 3D world, it
observes a 2D planar perspective projection of the world based on its current
viewpoint. This projection is a well understood physical process, we aim to imbue
the agent’s architecture with an inductive bias based on inverting the 3D to 2D
planar projective process. This inverse mapping operation appears to be second
nature to many organisms, with the initial step of depth estimation being well
studied in the field of Physiology (Frégnac et al. 2004). We believe that providing
this mechanism implicitly in the agent’s architecture will improve its reasoning
capabilities in new environments to bypass a large part of the learning process.

The overall concept is that as the agent explores the environment, the perception
module fp produces a 2D feature map st, in which each feature vector represents
a learned semantic representation of a small receptive field from the agent’s
egocentric observation. While they are integrated into the flat (not spatially
structured) recurrent hidden state ht through function fr (Equation 4.1), we
propose its integration into a second tensor Mt, a top-down egocentric memory,
which we call EgoMap. The feature vectors are mapped to their egocentric positions
using the inverse projection matrix and depth estimates. This requires an agent
with a calibrated camera (known intrinsic parameters), which is a soft constraint
easily satisfied. The map can then be read by the agent in two ways: a global
convolutional read operation and a self-attention operation.

Let the agent’s position and angle at time t be (xt, yt) and φt respectively, Mt is
the current EgoMap. st are the feature vectors extracted by the perception module,
Dt are the depth buffer values. The change in agent position and orientation
between time-step t and t−1 are (dxt, dyt, dφt).
There are three key steps to the operation of the EgoMap:
1. Transform the map to the agent’s egocentric frame of reference:

M̂t = Affine(Mt−1, dxt, dyt, dφt) (4.3)
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2. Update the map to include new observations:

M̃t = InverseProject(st, Dt) M′t = Combine(M̂t, M̃t) (4.4)

3. Perform a global read and attention based read, the outputs of which are fed
into the policy and value heads:

rt = Read(M′t) ct = Context(M′t, st, rt) (4.5)

These three operations will be further detailed below in individual subsec-
tions. Projective mapping and structured memory should augment the agent’s
performance where spatial reasoning and long term recollection are required. On
simpler tasks the network can still perform as well as the baseline, assuming the
extra parameters do not cause further instability in the RL training process.
Affine transform — At each time-step we translate and rotate the map into the
agent’s frame of reference, this is achieved with a differentiable affine transform,
popularized by the well known Spatial Transformer Networks (Jaderberg et al.
2015). Relying on the simulator to provide the change in position (dx, dy) and
orientation dφ, we convert the deltas to the agent’s egocentric frame of reference
and transform the map with a differentiable affine transform. The effect of
noise on the change in position on the agent’s performance is analysed in the
experimental section.
Inverse projective mapping — We take the agent’s current observation, extract
relevant semantic embeddings and map them from a 2D planar projection to
their 3D positions in an egocentric frame of reference. At each time-step, the
agent’s egocentric observation is encoded by the perception module (a convolu-
tional neural network) to produce feature vectors, this step is a mapping from
R4×64×112 → R16×4×10. Given the inverse camera projection matrix and the depth
buffer provided by the simulator, we can compute the approximate location of the
features in the agent’s egocentric frame of reference. As the mapping is a many to
one operation, several features can be mapped to the same location. Features that
share the same spatial location are averaged element-wise.

The newly mapped features must then be combined with the translated map
from the previous time-step. We found that the use of a momentum hyper-
parameter, α, enabled a smooth blending of new and previously observed features.
We use an α value of 0.9 for the tests presented in the chapter. We ensured that
the blending only occurs where the locations of new projected features and the
map from the previous time-step are co-located, see Equation 4.6.

M′(x,y)
t = ηM̂t

(x,y)
+ (1− η)M̃(x,y)

t

η =


1.0, if M̃(x,y)

t = 0 & M̂t
(x,y) 6= 0

0.0, if M̃t
(x,y) 6= 0 & M̂(x,y)

t = 0
α, otherwise

(4.6)
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Sampling from a global map — A naive approach to the storage and transforma-
tion of the egocentric feature map would be to apply an affine transformation to
the map at each time-step. A fundamental downside of applying repeated affine
transforms is that at each step a bilinear interpolation operation is applied, which
causes smearing and degradation of the features in the map. We mitigated this
issue by storing the map in a global reference frame and mapping the agent’s
observations to the global reference frame. For the read operation an offline affine
transform is applied.
Read operations — We wanted the agent to be able to summarize the whole spa-
tial map and also selectively query for pertinent information. This was achieved
by incorporating two types of read operation into the agent’s architecture, a Global
Read operation and a Self-attention Read.

The global read operation is a CNN that takes as input the egocentric map and
outputs a 32-dimensional feature vector that summarizes the map’s contents. The
output of the global read is concatenated with the visual CNN output. To query
for relevant features in the map, the agent’s controller network can output a query
vector qt, the network then compares this vector to each location in the map with
a cosine similarity function in order to produce scores, which are the same width
and height as the map. The scores are normalized with a softmax operation to
produce a soft-attention in the lines of (Bahdanau et al. 2014) and used to compute
a weighted average of the map, allowing the agent to selectively query and focus
on parts of the map. This querying mechanism was used in both the Neural Map
(Parisotto et al. 2018) and MERLIN (Wayne et al. 2018a) RL agents. We made the
following improvements: Attention Temperature and Query Position.

σ(x)i =
eβxi

∑ eβxj
(4.7)

Query Position: A limitation of self-attention is that the agent can query what it
has observed but not where it had observed it. To improve the spatial reasoning
performance of the agent we augmented the neural memory with two fixed
additional coordinate planes representing the x,y egocentric coordinate system
normalized to (−1.0, 1.0), as introduced in (Liang et al. 2017). The agent still
queries based on the features in the map, but the returned context vector includes
two extra scalar quantities which are the weighted averages of the x,y planes. The
impacts of these additions are discussed and quantified in the ablation study,
Section 4.4.

Attention Temperature: To provide the agent with the ability to learn to modify
the attention distribution, the query includes an additional learnable temperature
parameter, β, which can adjust the softmax distribution detailed in Equation 4.7.
This parameter can vary query by query and is constrained to be one or greater
by a Oneplus function.
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Figure 4.2: Memory-based navigation scenarios: Left - The “Find and return”
scenario. With the agent’s egocentric viewpoint and top down view
unseen by the agent; the agent starts at the green object, finds the
red object and then returns to the entry. Right - The “Ordered K−item
scenario”, where K=4. An episode where the agent collects the 4 items
in the correct order.

4.4 Experiments

The EgoMap and baseline architectures were evaluated on four challenging 3D
scenarios, which require navigation and different levels of spatial memory. The
scenarios are taken from (Beeching et al. 2020b) who extended the 3D ViZDoom
environment (Kempka et al. 2017) with various scenarios that are partially ob-
servable, require memory, spatial understanding, have long horizons and sparse
rewards. Whilst more visually realistic simulators are available such as Gibson
(Xia et al. 2018), Matterport (Anderson et al. 2018b), Home (Brodeur et al. 2018)
and Habitat (Savva et al. 2019b), the tasks available are simple point-goal tasks
which do not require long term memory and recollection. We target the following
three tasks that we implemented in chapter 3:
Labyrinth: The agent must quickly find the exit, the reward is a sparse positive
reward for finding the exit. This tests the ability to explore in an efficient manner.
Ordered k-item: An agent must find k objects in a fixed order. It tests three
aspects of an agent: its ability to explore the environment efficiently, the ability to
learn to collect items in a predefined order and its ability to store where items
were located so they can be retrieved in the correct order. We tested two versions
of this scenario with 4-items or 6-items, an example is shown in 4.2.
Find and return: The agent starts next to a green totem, explores the environment
to find a red totem and then returns to the start. This is our implementation of
“Minotaur" scenario from (Parisotto et al. 2018). The scenario tests the ability to
navigate and retain information over long time periods, an example is shown in
4.2.

All the tasks require different levels of spatial memory and reasoning. For
example, if an agent observes an item out of order it can store the item’s location
in its memory and navigate back to it later. The scenarios that require more
spatial reasoning, long term planning and recollection are where the agent has the
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Table 4.2: Results of on four scenarios for 1.2 B environment steps. We show
the mean and std. for three independent experiments.

Scenario
4 item 6 item Find and Return Labyrinth

Agent Train Test Train Test Train Test Train Test
Random -0.18 -0.21 -0.21 -0.21 -0.21 -0.21 -0.16 -0.09

Baseline 2.34 ± 0.03 2.27 ± 0.04 2.86 ± 0.16 2.54 ± 0.23 0.66 ± 0.00 0.63 ± 0.03 0.73 ± 0.02 0.69 ± 0.01

Neural Map 2.34 ± 0.04 2.22 ± 0.04 2.75 ± 0.06 2.47 ± 0.03 0.83 ± 0.07 0.72 ± 0.03 0.77 ± 0.04 0.71 ± 0.02

EgoMap 2.40 ± 0.01 2.29 ± 0.02 3.21 ± 0.01 2.80 ± 0.05 0.89 ± 0.01 0.85 ± 0.02 0.75 ± 0.00 0.73 ± 0.02
Optimum

(Upper Bound)
2.5 2.5 3.5 3.5 1.0 1.0 1.0 1.0

greatest improvement in performance. In all scenarios there is a small negative
reward for each time-step to encourage the agent to complete the task quickly.
Experimental strategy and generalization to unseen environments — Many
configurations of each scenario were created through procedural generation and
partitioned into separated training and testing sets of size 256 and 64 respectively
for each scenario type. Although the task in a scenario is fixed, we vary the
locations of the walls, item locations, and start and end points; to ensure a diverse
range of possible scenario configurations. A limited hyper-parameter sweep
was undertaken with the baseline architecture to select the hyper-parameters,
which were fixed for both the baseline, Neural Map and EgoMap agents. Three
independent experiments were conducted per task to evaluate the algorithmic
stability of the training process. To avoid information asymmetry, we provide the
baseline agent with dx, dy, sin(dθ), cos(dθ) concatenated with its visual features.
Training Details — The model parameters were optimized with an on-policy,
policy gradient algorithm; batched Advantage Actor Critic (A2C) (Mnih et al.
2016a), we used the PyTorch (Paszke et al. 2017) implementation of A2C (Kostrikov
2018). We sampled trajectories from 16 parallel agents and updated every 128 steps
in the environment with discounted returns bootstrapped from value estimates
for non-terminal states. The gamma factor was 0.99, the entropy weight was
0.001, RMSProp (Hinton et al. 2012b) was used with a learning rate of 7e-4. The
EgoMap agent map size was 16×24×24 with a grid sampling chosen to cover the
environment size with a 20% padding. The agent’s policy was updated over 1.2B
environment steps, with a frame skip of 4. Training took 36 hours for the baseline
and 8 days for the EgoMap, on 4 Xeon E5-2640v3 CPUs, with 32GB of memory
and one NVIDIA GK210 GPU.
Results — Results from the baseline and EgoMap policies evaluated on the 4

scenarios are shown in table 4.2, all tasks benefit from the inclusion of inverse
projective mapping and spatial memory, with the largest improvement on the Find
and Return scenario. We postulate that the greater improvement in performance
is due to two factors; firstly this scenario always requires spatial memory as the
agent must return to its starting point and secondly the objects in this scenario
are larger and occupy more space in the map. We also compared to the state of
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Figure 4.3: Training curves for the Find and Return test set.

the art in spatially structured neural memory, Neural Map (Parisotto et al. 2018).
Figure 4.3 shows agent training curves for the recurrent baseline, Neural Map and
EgoMap, on the Find and Return test set configurations.
Ablation study — An ablation study was carried out on the improvements made
by the EgoMap architecture. We were interested to see the influence of key options
such as the global and attention-based reads, the similarity function used when
querying the map, the learnable temperature parameter and the incorporation of
location-based querying. The Cartesian product of these options is large and it
was not feasible to test them all, we therefore decided to selectively switch off
key options to understand which aspects contribute to the improvement in perfor-

Table 4.3: Egomap ablation study, Find and Return scenario, conducted after 800M
steps.

Ablation Train Test
Baseline 0.668 ± 0.028 0.662 ± 0.036

No global read 0.787 ± 0.007 0.771 ± 0.029

No query 0.838 ± 0.003 0.811 ± 0.013

No query temperature 0.845 ± 0.014 0.815 ± 0.019

No query position 0.839 ± 0.007 0.814 ± 0.008

EgoMap 0.847 ± 0.011 0.814 ± 0.017

EgoMap (L1 query) 0.851 ± 0.014 0.828 ± 0.011
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mance. The results of the ablation study are shown in Table 4.3. Both the global
and self-attention reads provide large improvements in performance over the
baseline recurrent agent. The position-based query provides a small improvement.
A comparison of the similarity metric of the attention mechanism highlights the
L1-similarity achieved higher performance than cosine. A qualitative analysis of
the self-attention mechanism is shown in the next section.

4.5 Analysis

Visualization — The EgoMap architecture is highly interpretable and provides
insights about how the agent reasons in 3D environments. In Figure 4.4 we show
analysis of the spatially structured memory and how the agent has learned to
query and self-attend to recall pertinent information. The Figure shows key steps
during an episode in the Ordered 6-item and Find and Return scenarios, including
the first three principal components of the 16-dimensional EgoMap, the attention
distribution and the vector returned from position queries. Refer to the caption for
further details. The agent is seen to attend to key objects at certain phases of the
task, in the Ordered 6-item scenario the agent attends the next item in the sequence
and in the Find and Return scenario the agent attends to the green totem located at
the start/return point once it has found the intermediate goal. This demonstrates
that augmenting an agent with spatially structured memory not only improves
performance but also increases interpretability of the agent’s decision making
process.

Noisy Actions — One common criticism of agents trained in simulation is that
the agent can query its environment for information that would not be readily
available in the real world. In the case of EgoMap, the agent is trained with
ground truth ego-motion measurements. Real-world robots have noisy estimates
of ego-motion due to the tolerances of available hardware. We performed an
analysis of the EgoMap agent trained in the presence of a noisy oracle, which
adds noise to the ego-motion measurements. Noise is drawn from a normal
distribution centered at one and is multiplied by the agent’s ground-truth motion,
the effect of the noise is cumulative but unbiased. Tests were conducted with
standard deviations of up to 0.2 which is a tolerance of more than 20% on the
agent’s ego-motion measurements, results are shown in Figure 4.5. We observed
that the agent retains the performance increase over the baseline for up to 10%
of noisy actions, the performance degrades to that of the baseline agent. This
demonstrates the EgoMap architecture learns to be robust to noisy odometry.
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Figure 4.4: Analysis for key steps (different rows) during an episode from the
Ordered 6-item (left) and Find and Return (right) scenarios. Within
each sub-figure: Left column - RGB observations, central column -
the three largest PCA components of features mapped in the spatially
structured memory, right - attention heat map and x,y query position
vector. The agent maps and stores features from key objects and
attends to them when they are pertinent to the current stage of the
task. For example, for the left figure on the first row at time-step 5

the blue spherical object, which is ordered 4 of 6, is mapped into the
agent’s spatial memory. The agent explores the environment collecting
the items in order, it collects item 3 of 6 between time-step 105 and
108, shown on rows 2 and 3. As soon as the agent has collected item
3 it queries its internal memory for the presence of item 4, which is
shown by the attention distribution on rows 3 and 4. On the last row,
time-step 140, the agent observes the item and no longer attempts to
query for it, as the item is in the agent’s field of view.

4.6 Conclusion

We have presented EgoMap, an egocentric spatially structured neural memory
that augments an RL agent’s performance in 3D navigation, spatial reasoning and
control tasks. EgoMap includes a differentiable inverse projective transform that
maps learned task-specific semantic embeddings of agent observations to their
world positions. We have shown that through the use of global and self-attentive
read mechanisms an agent can learn to focus on important features from the
environment. We demonstrate that an RL agent can benefit from spatial memory,
particularly in 3D scenarios with sparse rewards that require localization and
memorization of objects. EgoMap out-performs existing state of the art baselines,
including Neural Map, a spatial memory architecture. The increase in performance
compared to Neural Map is due to two aspects. 1) The differential projective
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Figure 4.5: Test set performance of the EgoMap agent during training with
noisy ego-motion measurements, conducted for 320 M environment
frames. Shown are test set performance during training (left), final
performance for a range of noise values (centre) which are tabulated
(right). We retain an improvement in performance over the baseline
agent for noisy actions of up to 10%.

transform maps what the objects are to where they are in the map, which allows for
direct localization with attention queries and global reads. In comparison, Neural
Map writes what the agent observes to where the agent is on the map, this means
that the same object viewed from two different directions will be written to two
different locations on the map, which leads to poorer localization of the object. 2)
Neural Map splits the map to four 90-degree angles, which alleviates blurring,
our novel solution to this issue stores a single unified map in an allocentric frame
of reference and performs an offline egocentric read, which allows an agent to act
in states spaces where the angle is continuous, without the need to quantize the
agent’s angle to 90-degree increments.

We have shown, with detailed analysis, how the agent has learned to interact
with its structured internal memory. The ablation study has the benefits of the
global and self-attention operations and that these can be augmented with temper-
ature, position querying and other similarity metrics. We have demonstrated that
the EgoMap architecture is robust to actions with tolerances of up to 10%. Future
work in this area of research would evaluate the architecture in situations with
noisy depth measurements and in a larger variety of simulators such as MALMO
(Johnson et al. 2016a), DeepMind Lab (Beattie et al. 2016a) and Habitat (Savva
et al. 2019b).

The focus of this chapter has been on the incorporation of spatially structured
metric maps and differentiable inverse projective geometry. In the next chapter,
we explore an irregular topological map structure and look to construct neu-
ral network architectures to perform an approximation of a classical planning
algorithm.
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L E A R N I N G T O P L A N W I T H U N C E RTA I N
T O P O L O G I C A L M A P S

Chapter abstract
In this chapter we train an agent to navigate in 3D environments using a
hierarchical strategy including a high-level graph based planner and a local
policy. Our main contribution is a data driven learning based approach
for planning under uncertainty in topological maps, requiring an estimate
of shortest paths in valued graphs with a probabilistic structure. Whereas
classical symbolic algorithms achieve optimal results on noise-less topologies,
or optimal results in a probabilistic sense on graphs with probabilistic structure,
we aim to show that machine learning can overcome missing information in the
graph by taking into account rich high-dimensional node features, for instance
visual information available at each location of the map. Compared to purely
learned neural white box algorithms, we structure our neural model with an
inductive bias for dynamic programming based shortest path algorithms, and
we show that a particular parameterization of our neural model corresponds
to the Bellman-Ford algorithm. By performing an empirical analysis of our
method in simulated photo-realistic 3D environments, we demonstrate that the
inclusion of visual features in the learned neural planner outperforms classical
symbolic solutions for graph based planning.
The work in this chapter has led to the publication of a conference paper:

• Edward Beeching, Jilles Dibangoye, Olivier Simonin, and Christian Wolf
(2020d). “Learning to plan with uncertain topological maps.” In: Proceed-
ings of the IEEE European conference on computer vision (ECCV) - (spotlight
presentation).

5.1 Introduction

It has been shown that humans and other animals navigate through the use of
waypoints combined with a local locomotion policy (Wang et al. 2002; Gupta et al.
2017c). In this work, we mimic this strategy by proposing a hierarchical planner,
which performs high-level long term planning using an uncertain topological map
(a valued graph including visual features) combined with a local RL-based policy
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98 learning to plan with uncertain topological maps

Figure 5.1: An agent navigates to a goal location with a hierarchical planner.
A high-level planner proposes target nodes in a topological map,
which are used as an objective for a local point-goal policy. The
graph is estimated from an explorative rollout and, as such, uncertain:
the opacities of the edges correspond to estimations of connectivity
between nodes (darker lines = higher confidence). We observe a low
probability of connection between the node at the agent’s position and
its nearest neighbor, whereas from the visual observation associated
to the node we can see there is a traversable space between the two
nodes.

navigating between high-level waypoints proposed by the graph planner. Our
main contribution is a way to combine symbolic planning with machine learning,
and we look to structure a neural network architecture to incorporate landmark
based planning in unseen 3D environments.

When solving visual navigation tasks, biological or artificial agents require an
internal representation of the environment if they want to solve more complex
tasks than random exploration. We target a scenario where an agent is trained
on a large-scale set of 3D environments to learn to reason on planning and
navigation. When faced with a previously unseen environment, the agent is
given the opportunity to build a representation by doing an explorative rollout
from a previously learned explorative policy. It can then exploit this internal
representation in subsequent visual navigation tasks. This corresponds to many
realistic situations, where robots are deployed to indoor environments and are
allowed to familiarize themselves before performing their tasks (Savinov et al.
2018b).

Our agent constructs an imperfect topological map of its environment, where
nodes correspond to places and valued edges to connections. Edges are assigned
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two different values, spatial distances and probabilities indicating whether it
is possible to navigate between the two nodes. Nodes are also assigned rich
visual features extracted from images taken at the corresponding places in the
environment. After deployment, the agent faces visual navigation tasks requiring
it to find a specific location in the environment provided by a set of images
corresponding to different viewpoints, extending the task proposed in (Zhu et al.
2017). The objective is to identify the goal location in the internal representation,
and to provide an estimate for the shortest path to it. The main difficulty we
address here is the fact that this path is an estimate only, since the ground truth
path is not available during testing.

Whilst planning in graphs with known connectivity has been solved for many
decades (Dijkstra 1959; Bellman 1958), planning under uncertainty remains an
ongoing area of research. Whereas optimal results in a probabilistic sense exist
for graphs with probabilistic connectivity, we aim to show that machine learning
can overcome missing information in the graph by taking into account rich high-
dimensional node features extracted from image observations associated with
specific nodes. We train a graph neural network in a fully supervised way to
predict estimates of the shortest path, using vision to overcome uncertainty in
the connectivity information. We present a new variant of graph neural networks
imbued with specific inductive bias, and we show that this structure can be
parameterized to fallback to the classical Bellman-Ford algorithm.

Figure 5.1 illustrates the hierarchical planner: a neural graph based planner
runs an outer loop providing estimates for next way-point on a graph, which
are used as target nodes for a local RL-based policy running an inner loop and
providing feedback to high-level planner on reached locations. Both planners take
into account visual features, either stored in the graph (graph based planner),
or directly as observations provided by the environment (local policy). The two
planners are trained separately — the graph based planner in a fully supervised
way from ground truth graphs, the local policy with RL and a point-goal strategy.
This work makes the following contributions:

• A hierarchical model combining high-level graph based planning with a local
point goal policy for robot navigation;

• A neural planner that combines an uncertain topological map with node fea-
tures to learn to estimate shortest paths in noisy and unknown environments.

• A variant of graph networks encoding inductive bias inspired by dynamic
programming-based shortest path algorithms.

• We evaluate this method in challenging and visually realistic 3D environments
and show it outperforms symbolic planning on noisy topological maps.
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5.2 Related work

Classical planning and graph search — A large body of work is available on
classical planning on graphs, notable references include (LaValle 2006; Remolina
et al. 2004). In robotics, there have been a number of works applying classical
planning in topological maps for indoor robot navigation, for instance (Shatkay
et al. 1997; Thrun 1998).
Planning under imperfect information — In many realistic robotic problems,
the current state of the world is unknown. Though sensor observations pro-
vide measurements about the current state of the world, these measurements
are usually incomplete or noisy because of disturbances that distort their values.
Planning problems that face these issues are referred to as planning problems
under imperfect information. Research on this topic has a long history, starting
with the seminal work by (Åström 1965) presenting the first non-trivial exact
dynamic programming algorithm for partially observable Markov decision pro-
cesses (POMDPs). While there are other models LaValle 2006, chap 12, POMDPs
emerged as the standard framework to formalize and solve (single-agent) sequen-
tial decision-making problems with imperfect information about the state of the
world (Kaelbling et al. 1998). As the agent does not have access to the actual state
of the world, it acts based solely on its entire history of actions and observations,
or the corresponding belief state, i.e., the posterior probability distribution over
the states given the history (Åström 1965; Smallwood et al. 1973). Approaches
for finding optimal solutions have been investigated in the 2000s, ranging from
dynamic programming (Kaelbling et al. 1998) to heuristic search methods (Smith
et al. 2004; Kurniawati 2008). Key to these approaches is the idea that one can re-
cast the original problem into a continuous-state fully observable Markov decision
process, where states are belief states or histories (Åström 1965). Doing so allows
theory and algorithm that applies for MDPs to also apply to POMDPs, albeit in
much larger (and possibly continuous) state space. Another significant result of
this literature is proof that the optimal value function is a piece-wise linear and
convex function of the belief states, which allows the design of algorithms with
faster rates of convergence (Smallwood et al. 1973). For a thorough discussion on
existing solvers for POMDPs, the reader can refer to (Shani et al. 2013).
Deep Reinforcement Learning — The field of Deep Reinforcement Learning (RL)
has gained attention with successes on board games (Silver et al. 2018) and Atari
games (Mnih et al. 2015c). Recent works have applied Deep RL for the control
of an agent in 3D environments (Mirowski et al. 2017) (Jaderberg et al. 2016a),
exploring the use of auxiliary tasks such as depth prediction, loop detection
and reward prediction to accelerate learning. Other recent work uses street-
view scenes to train an agent to navigate in city environments (Mirowski et al.
2018a). To infer long term dependencies and store pertinent information about
the partially observable environment, network architectures typically incorporate
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recurrent memory such as Gated Recurrent Units (Chung et al. 2015a) or Long
Short-Term Memory (Hochreiter et al. 1997b). Extensions to memory based
neural approaches began with Neural Turing Machines (Graves et al. 2014) and
Differentiable Neural Computers (Graves et al. 2016), and have since been adapted
to expand the capacity of Deep RL agents (Wayne et al. 2018a). Spatially structured
memory architectures have been shown to augment an agent’s performance in
3D environments and are broadly split into two categories: metric maps which
discretize the environment into a grid based structure and topological maps
which produce node embeddings at key points in the environment. Research in
learning to use a metric map is extensive and includes spatially structured memory
(Parisotto et al. 2018), Neural SLAM based approaches (Zhang et al. 2017c) and
approaches incorporating projective geometry and neural memory (Gupta et al.
2017b; Bhatti et al. 2016a), these techniques are combined, extended and evaluated
in (Beeching et al. 2020c). Other works include that of Value Iteration Networks
(VIN) (Tamar et al. 2016) which approximate the value iteration algorithm with a
CNN, applied planning in small fully observable state spaces (grid worlds). While
VIN and our work structure planners, VINs use convolutions to approximate
classical value iteration, while we use a graph representation and a novel GNN
architecture with recurrent updates to approximate the Bellman-Ford algorithm.
(Karkus et al. 2017) plans under uncertainty in partially observable gridworld
environments. Here uncertainty refers to POMPs, the classical QMDP algorithm
is used as inductive bias for a neural network, whereas in our work uncertainty is
over node connectivity in a graph constructed in a previously unseen environment.
(Srinivas et al. 2018) is applied in observable state spaces to learn a forward model
in a latent space to plan appropriate actions; they are not hierarchical, are not
graph-based and do not appear to plan under uncertainty.

Research combining learning, navigation in 3D environments and topological
representations has been limited in recent years with notable works being (Savinov
et al. 2018b) who create graph a through random exploration in ViZDoom RL
environment (Kempka et al. 2017). (Eysenbach et al. 2019b) performs planning
in 3D environments on a graph-based structure created from randomly sampled
observations, with node distances estimated with value estimates. The downside
of these approaches is that to generalize to an unseen environment, many random
samples must be taken to populate the graph.

Graph neural networks — Graph Neural Networks (GNN) are deep networks
that operate on graphs directly. They have recently shown great promise in
domains such as knowledge graphs (Schlichtkrull et al. 2018), chemical analysis
(Gilmer et al. 2017), protein interactions (Fout et al. 2017), physics simulations
(Battaglia et al. 2016) and social network analysis (Kipf et al. 2017). These types
of architectures enable learning from both node features and graph connectivity.
Several review papers have covered graph neural networks in great detail (Bron-
stein et al. 2017; Battaglia et al. 2018a; Wu et al. 2019; Zhou et al. 2018). GNNs
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have been applied to shortest path planning in travelling salesmen problems (Li
et al. 2018; Joshi et al. 2019) and it has been reasoned that they can approximate
optimal symbolic planning algorithms such as the Bellman-Ford algorithm (Xu
et al. 2019b). This work applies a novel variant of GNN in order to solve approx-
imate planning problems, where classical methods may struggle to deal with
uncertainty.

5.3 Hierarchical navigation with uncertain graphs

We train an agent to navigate in a 3D visual environment and to exploit an internal
representation, which it is allowed to obtain from an explorative rollout before
the episode. Our objective is image goal, i.e. target-driven navigation to a location
which is provided through a (visual) image. We extend the task introduced in
(Zhu et al. 2017) by generalizing to unseen environment configurations without
the need to retrain the agent for a novel environment.

From the explorative rollout obtained with an agent trained with RL, which is
further described in section 5.3.3, we create an uncertain topological map covering
the environment, i.e. a valued graph G={V ,V ,E,L,D}, where V={1, . . . N} is
a set of nodes, V is a K×N matrix of rich visual node features of dimensions
K, E ∈ [0, 1]N×N is a set of edge probabilities where Ei,j is the probability of
having an edge between nodes i and j, L is a matrix of node locations and D is a
distance matrix, where Di,j is a distance between nodes i and j. While D encodes
a distance in a path planning sense, E encodes the probability of j being directly
accessible from i with obstructions. The uncertainty encoded by this probability
can be considered to be a combination of aleatory variability, i.e. uncertainty
associated with natural randomness of the environment, as well as epistemic
uncertainty, i.e. uncertainty associated with variability in computational models
for estimating the graph, in our case the explorative policy trained with RL and
taking into account visual observations.

Once the topological map is obtained, the objective of the agent at each episode
is to navigate to a location given an image, which is provided as additional obser-
vation at each time step. The agent acts in 3D environments like Habitat(Savva
et al. 2019a) (see section 6.6), receiving images of the environment as observations
and predicting actions from a discrete space (forward, turn left 10 ◦, turn right 10 ◦).
We propose a hierarchical planner performing actions at two different levels:

a high-level graph based planner that operates on longer time scale τ and
iteratively proposes new point-goals nodes pτ

g that are predicted, by a Graph
Neural Network, to be on the shortest path from the agent to the estimated
location of the target image.
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Figure 5.2: Illustration of the different types of solutions to the high-level
graph planning problem: (a) the ground truth graph (unavailable
during testing) with the shortest path from node S to node T in red;
(b) the uncertain graph available during test time. This graph is fully
connected and for each edge a connection probability is available. For
clarity we here show only edges where the connection probability is
above a threshold. The edge from A→B is wrongly estimated as not
connected; (c) an “optimal” path taking into account both probabilities
and distances; (d) A learned shortest path, where the visual features at
node A indicate passage to node B. We supervise a network to predict
the GT path (a).

a local policy that has been trained to navigate to a local point-goal pτ
g, which

has been provided by the high-level policy. The local policy operates for a
maximum of m time-steps, where m is a hyper-parameter, set to 10. The
agent has been trained with an additional STOP action, so that it can learn to
terminate the local policy in the case that it reaches pτ

g in under m steps.

The two planners communicate through estimated locations, the graph planner
indicating the next waypoint to the local policy as a location, and the local policy
providing an estimate of its location back to the high-level planner. The planner
updates its current node estimate as the nearest node and planning continues.

5.3.1 High-level planning with uncertain graphs

The objective of the high-level planner is to estimate the shortest path from the
current position S∈V in the graph to a terminal node T∈V , whose identity is
estimated as the node whose visual features are closest to the target image in
cosine distance. Planning takes into account the distances between nodes encoded
in D as well as estimated edge connectivity encoded in E. As an edge (i, j) may
have a large connection probability Ei,j but still be obstructed in reality, the goal
is to learn a trainable planner parameterized by parameters θ, which takes into
account visual features V to overcome the uncertainty in the graph connectivity.
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To this end, we assume the ground truth connectivity E∗ available during training
only. Figure 5.2 illustrates the different types of solutions this problem admits:
the optimal shortest path is only available on ground truth data (Figure 5.2a), the
objective is to use the noisy uncertain graph (Figure 5.2b) and provide an estimate
of the optimal solution taking into account visual features (Figure 5.2d). This is
unlike the optimal solution in a probabilistic sense calculated from a symbolic
algorithm (Figure 5.2c).

We propose a trainable planner, which consists of a novel graph neural network
architecture with dedicated inductive bias for planning. Akin to graph networks
(Battaglia et al. 2018b), the node embeddings are updated with messages over the
edges, which propagate information over the full graph. While it has been shown
that graph networks can be trained to perform planning (Xu et al. 2019a), we aim
to closely mimic the structure of the Bellman-Ford algorithm and we embue the
planner with additional inductive bias and a supervised objective to explicitly
learn to calculate shortest paths from data. To this end, each node i of the graph
is assigned an embedding xi = [vi, ei, ti,di, si] where vi are visual features from
the memory matrix V , ti is a boolean value indicating if the node is the target, ei
are the edge connection probabilities from node i to all other nodes, di are the
distances for node i to all other nodes, si is a one hot vector identifying the node.

We motivate our neural model with the following objective: the planner should
be able to exploit information contained in the graph connectivity, but also in the
visual features, to be able to find the shortest path from a given current node to
a target node. As with classical planning algorithms, it will thus be required to
keep for each node a latent representation of the bound di on the shortest distance
as well as information on the identity of the outgoing edge to the neighbor on
the shortest path, the predecessor function Π(i). Known algorithms (Dijstra,
Bellman-Ford) perform iterative updates of these variables (di, Πi) by comparing
them with neighboring nodes and their inter-node distances, updating the bound
di and Πi when a shorter path is found than the current one. This is usually done
by iterating over the successors of a given node i.

In our trained model, these variables are not made explicit, but they are sup-
posed to be learned as a unique vectorial latent representation for each node i in
the form of an internal state ri, which generally holds current information on the
reasoning of the agent. The input to each iteration of the graph network is, for
each node i, the node embedding xi, and the node state ri, which we concatenate
to form a single node vector ni = [xi, ri] = [vi, ei, ti,di, si, ri]. As classically done
in graph neural networks, this representation is updated iteratively by exchanging
messages between nodes in the form of trainable functions. The messages and
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trainable functions of our model are given as follows, illustrated in Figure 5.3,
and will be motivated in detail further below.

mi,j =W1[ni,nj]� σ(W2[ni,nj]) (5.1)

r′i = φr←h({mi,j}∀j,hi) (5.2)

Here, � is the Hadamard product, W. are weight matrices, and r′i is the updated
latent representation. The features xi do not change during these operations.

Equation (5.1) is inspired from gated linear layers (Dauphin et al. 2017), and
enables each node to identify whether it is the target, and update its representation
of the bound. We use gated linear layers in order to provide the network with the
capacity to update bound estimates for its neighbors.

Equation (5.2) integrates messages from all neighbors j of node i, updating
its latent representation. Since planning requires this step to update internal
bounds on shortest paths, akin to shortest path algorithms that rely on dynamic
programming, we serialize the updates from different neighbors into a sequence
of updates, which allows the network to learn to calculate minimum functions
on bound estimates. In particular, we model this through a Gated Recurrent Unit
(Chung et al. 2014), using a hidden state vector hi associated to each node i. The
step is structured to mimic the min operation of the Bellman-Ford algorithm (see
section 5.3.2 for details on this equivalence).

Equation (5.2) can thus be rewritten in more detail as follows: Going sequentially
over the different neighbors j of node i, the hidden state hi is updated as follows:

h
[j]
i =W3mi,j +W4h

[j−1]
i (5.3)

For simplicity, we omitted the gating equations of GRUs and presented a single
layer GRU. In practice we include all gating operations and use a stacked GRU
with two layers. The output of the recurrent unit is a non-linear function of the
last hidden state, providing the new latent value r′i = MLP(hN

i ).
The above messages are exchanged and accumulated for k steps where k is

a hyper-parameter which should be at least the largest span of the graphs in
the dataset. The action distribution is then estimated for each node as a linear
mapping of the node embeddings followed by a softmax activation function.

5.3.2 Relations to optimal symbolic planners

As mentioned before, our neural planner could in theory be instantiated with a
specific set of network parameters such that it corresponds to a known symbolic
planner calculating an optimal path in a certain sense. To illustrate the relationship
of the network structure, in particular the recurrent nature of the graph updates,
we will layout details for the case where the planner performs the estimation of a
shortest path given the distance matrix and ignoring the uncertainty information
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Figure 5.3: (a) An example graph; (b) One iteration of the neural planner’s mes-
sage passing and bound update. Messages from neighbors are serial-
ized and fed through a GRU, an inductive bias for learning minima
necessary for bound updates.

— an adaptation to an optimal planner in the probabilistic sense can be done in a
straightforward manner. To avoid misunderstandings, we insist that the reasoning
developed in this sub section is for illustration and general understanding of the
chosen inductive network bias only, the real network parameters are fully trained
with supervised learning as explained in section 5.4.

Handcrafting a parameterization requires imposing a structure on the node
state ri, which otherwise is a learned representation. In our case, the node state
will be composed of the bound bi on the shortest path from the given node to the
target node (a scalar), and the current estimate Πi of the identity of predecessor
node of node i w.r.t. the shortest path, which can be represented as a 1-in-K
encoded vector indicating a distribution over nodes. Standard Bellman-Ford
iteratively updates the bound for a given node i by examining all its neighbors
j and checking whether a shorter path can be found passing through neighbor
j. This can be written in a sequential form s.t. the bound gets updated iterating
through the neighbors j=1. . .Ji of node i:

b[0]i = bi

b[j]i = min(b[j−1]
i , bj + dij)

b′i = b[Ji]
i

(5.4)

where bi and b′i are the bounds before and after the round of updates for node i.
In our neural formulation, the message updates given in equation (5.2), further

developed in (5.3), mimic the Bellman-Ford bound update given in Equations (5.4).
This provided motivation for our choice of a recurrent neural network in the graph
neural network, as we require the update of the recurrent state hj

i in Equation
(5.3) to be able to perform a minimum operation and an arg min operation (or
differentiable approximations of min and arg min).
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5.3.3 Graph creation from explorative rollouts

Graphs were generated during the initial rollout from an exploratory policy
trained with Reinforcement Learning. During training, the agent interacts with
training environments and receives RGB-D image observations calculated as
a projection from the 3D environment. The agent is trained to explore the
environment and to maximize coverage, similar to (Chaplot et al. 2020a; Chen
et al. 2019b).

To learn to estimate the graph connectivity, we add an auxiliary loss to the
agent’s objective function, flink(oi, oj ,hi) which is trained to classify whether two
locations are in line of sight of each other, conditioned on the visual features
oi, oj from the two locations and the agent’s hidden state hi. Node features
were calculated with a CNN (Lecun et al. 1998). Ground truth line of sight
measurements were computed by 2D ray tracing on an occupancy map of each
environment. In order to limit the size of the graph to a maximum number of
nodes k, we aim to maximize each node’s coverage of the environment using a
Gaussian kernel function. At each time step a new node is observed by the agent,
previous node positions are compared with a Gaussian kernel function (eq. 5.5)
in order to identify the index of the most redundant node r, which is removed
from the graph and replaced with the new node, node connectivities are then
recomputed with flink(.), where Li is the location of node i.

r = arg min
i

∑
j

K(Li,Lj), K(v, v′) = exp(
−‖v − v′‖2

2σ2 ), (5.5)

5.4 Training

The high-level graph based planner — is trained in a purely supervised way. We
generate ground truth labels by running a symbolic algorithm (Dijkstra (Dijkstra
1959)) on a set of valued ground truth training graphs described with the method
detailed in Section 5.3.3. In particular, the supervised training algorithm takes as
input uncertain/noisy graphs, which include visual features, and is supervised to
learn to produce paths, which are calculated from known ground truth graphs
unavailable during test time. During training we treat path planning as a classi-
fication problem where for a given target, each node must learn to predict the
subsequent node on the optimal path to the target. Formally for each node i we
predict a distribution Ai and aim to match a ground-truth distribution A∗i , which
is a one-hot vector, minimizing cross entropy loss L(A,A∗) = −∑n

i=1A
∗
i logAi.

We augment training with a novel version of mod-drop (Neverova et al. 2015),
an algorithm for multi-modal data, which drops modalities probabilistically
during training. During training we extend the node connection probabilities
with the ground truth node adjacencies and mask either the probabilities or
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Figure 5.4: Symbolic baselines and linkage prediction training curves. Left:
Symbolic baselines Dijkstra on thresholded probs. & cost func-
tion(5.5.1). Right: Average return & Acc. of line of sight predictions.

Table 5.1: H-SPL and acc. of the neural planner’s predictions. Left: Uncertrain
graphs. Right: Ground truth graphs.

Method Acc H-SPL
Symbolic (threshold) 0.114 0.184

Symbolic (custom cost) 0.115 0.269

Neural (w/o visual) 0.251 0.468

Neural (w visual) 0.262 0.501

Method Acc H-SPL
Symbolic (GT) 1.00 1.00
Neural planner (GT) 0.921 0.983

the adjacencies with a probability of 50%, during training we linearly taper the
masking probability from 50% to 100% over the first 250 epochs. Ensuring that the
final model requires only connection probabilities, but the reasoning performed
during message passing and recurrent updates can be bootstrapped from the
ground truth adjacencies. Training curves on unseen validation data are shown in
figure 5.5.

The local policy — is a recurrent version of AtariNet (Mnih et al. 2015b) with two
output heads for the action distribution and value estimates. The network was
trained with a reinforcement learning algorithm Proximal Policy Optimization
(PPO) (Schulman et al. 2017b) to navigate with discrete actions to a local point-
goal. Point-goals were generated to be within 5m of the spawn location of agent.
A dense reward was provided that corresponds to a decrease in geodesic distance
to the target, a large reward (10.0) was provided when the agent reached the
target and the STOP action was used. The episode was terminated when either
the STOP action was used or after 500 time-steps. A negative reward of -0.01 was
given at each time-step .

The explorative policy for graph creation — is trained with PPO (Schulman et al.
2017a). We aim to maximize coverage that is within the field of view of the agent.
We create an occupancy grid of the environment with a grid spacing of 10cm. The
first time a cell is observed the agent receives a reward of 0.1. A cell is considered
to observable if it is free space, within 3m of the agent and in the field of view of
the agent. Agent performance is shown in Figure 5.4.
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Figure 5.5: Ablations. Top: Accuracy and H-SPL with increasing size of data
when training with and without visual features. Bottom: Modality
mixing.

5.5 Experiments

We evaluated our method in simulated 3D environments in the Habitat (Savva
et al. 2019a) simulator with the visually realistic Gibson dataset (Xia et al. 2018).
During training, the agent interacts with 72 different environments, where each
environment corresponds to a different home. We evaluate on a set of 16 held out
environments.

5.5.1 High-level graph-based planner

The neural planner was implemented in PyTorch (Paszke et al. 2019).We compare
two metrics, accuracy of prediction of the next way-point along the optimal path
and the SPL metric (Anderson et al. 2018a), both for paths of length two or
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Figure 5.6: Time-steps from a rollout of the hierarchical planner (graph+local).
For each time-step: left – RGB-D obs., right – map of the en-
vironment (unseen) with graph nodes, source node, target node,
agent position(black), agent’s nearest neighbour, local point-goal pro-
vided by the planner and planned path.

greater. As we evaluate SPL for both the high level planner and the hierarchical
planner-controller, we refer to the high-level planner’s SPL as H-SPL to avoid
ambiguity.

Symbolic baselines — We compare the neural planner to two symbolic baselines,
which reason on the uncertain graph only, without taking into account rich node
features. While these baselines are “optimal” with respect to their respective
objective functions, they are optimal with respect to the amount of information
available to them, which is uncertain: (i) Thresholding — In order to generate
non-probabilistic edge connections, we threshold the connection probabilities
with values ranging from 0-1 in steps of 0.1. After threshholding the graph, path
planning was performed with Dijkstra’s algorithm; (ii) A custom cost function for
Dijkstra’s algorithm weighting distances and probabilities: cost(i, j) = Di,j −
λ log(Ei,j) . We vary λ in order to control the trade-off of distance and connection
probability. When λ is 0, the graph is a fully connected graph, whereas high
values of λ would lead to finding the most probable path.

Results of both symbolic baselines are shown in Figure 5.4, we observe that they
perform poorly under uncertainty. We evaluate the accuracy of their predictions
with respect to the symbolic baseline on the ground truth graph. We report
accuracy on source-target pairs separated by at least 2 steps.
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Time-step 0 Time-step 8 Time-step 16 

Time-step 48 Time-step 32 Time-step 24 

Figure 5.7: Six time-steps from a rollout of the hierarchical planner
(graph+local) in an unseen testing environment. For each time-step:
left – RGB-D observation, right – map of the environment (unseen)
with graph nodes, source node, target node, agent position(black),
nearest neighbour to the agent, local point-goal provided by the high
level planner and planned path.

Time-step 9 Time-step 42 Time-step 81 

Time-step 113 Time-step 170 Time-step 209 

Figure 5.8: Failure case - Six time-steps from a rollout of the hierarchical
planner (graph+local) in an unseen testing environment. For
each time-step: left – RGB-D observation, right – map of the
environment (unseen) with graph nodes, source node, target node,
agent position(black), nearest neighbour to the agent, local point-goal
provided by the high level planner and planned path.
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Table 5.2: Performance of the hierarchical graph planner & local policy

Method: Planner + Local policy Success rate SPL

Graph oracle (optimal point-goals, not comparable) 0.963 0.882

Random 0.152 0.111

Recurrent Image-goal agent 0.548 0.248

Symbolic (threshold) 0.621 0.527

Symbolic (custom cost) 0.707 0.585

Neural planner (sampling) 0.966 0.796

Neural planner (deterministic) 0.983 0.877

Image driven recurrent baseline — We also compare to an end-to-end RL ap-
proach where the current obs. and target are provided to a CNN based RL agent.
The architecture is a siamese CNN with a recurrent GRU. We train with a dense
reward of improvement in geodesic dist. and provide a reward of 10 when the
agent reaches the goal. We train with PPO for 200 M frames.

In Table 5.1, we compare the neural planner with the baselines. We can see, that
even without visual features, the neural planner is able to outperform the “optimal”
symbolic baselines. This can be explained with the fact, that the baselines optimize
a fixed criterion, whereas the neural planner can learn to exploit patterns in the
connection probability matrix E to infer valuable information on shortest ground
truth path. The gap further increases when the neural planner can use visual
features. Results of modality mixing (see section 5.4) are shown in Figure 5.5. As
a sanity check, table 5.1 compares the optimal symbolic planner against the neural
planner trained with ground truth adjacencies provided as input. The results of
the neural planner are close to optimum in this case.

We evaluated our approach on dataset sizes ranging from 8,000 graphs to
74,000 graphs (Figure 5.5). One graph contains 32×32 possible source-target
combinations, leading to a maximum amount of 75,000,000 training instances.

5.5.2 Hierarchical planning and control (topological & local

policy)

We evaluated the neural graph planner coupled with the local policy. For a given
episode, the graph planner estimates the next node in the path to a target image
and provides its location to the local policy, which executes for m time-steps. The
planner then re-plans from the nearest neighbor to the agent’s current position,
this back and forth process of planning and navigating continues until either
the agent reaches the target or 500 low-level time-steps have been conducted.
We report accuracy as percentage of runs completed successfully and SPL in
table 5.2, albeit measured on low-level trajectories as opposed to graph space.
We combine the local policy with various graph planners, and can see that the
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Figure 5.9: Ablation of a GRU for the accumulation of incoming messages. The
GRU was added to ensure that the model could represent the Bellman-
Ford algorithm.

neural graph planners greatly outperform the symbolic baselines. We perform
two evaluations of the neural planner; a deterministic evaluation where point-
goals are chosen with the argmax of the A distribution and a non-deterministic
one by sampling from A. The motivation is that by sampling, the planner can
escape from local minima and loops created by errors in approximation. This
is confirmed when studying rollouts from the agents, and also quantitatively
through the performances shown in table 5.2. Visualizations of steps from several
episodes are shown in Figures 5.6, 5.7 and 5.8.

5.5.3 Ablation: E�ect of chosen inductive bias

As developed in sections 3.1 and 3.2, our graph based planner includes a particular
inductive bias, which allows it to represent the Bellman-Ford algorithm for the
calculation of shortest or best paths. This bias is implemented as a recurrent
model (a GRU) running sequentially over the message passing procedures, as
illustrated in Figure 5.3. Figure 5.9 ablates the effect of this additional bias as
a function of data sizes ranging from 8,000 to 74,000 example graphs, each one
evaluated with 32

2=1,024 different combinations of starting and end points.

The differences are substantial, we can see that our model is able to exploit
increasing amounts of data and translate them into gains in performance, whereas
standard graph convolutional networks do not — we conjecture that they lack in
structure allowing them to pick up the required reasoning.

Figures 5.7 and 5.8 of this document show additional rollouts of the hierarchical
planner, complementary to Figure 5.6.
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5.6 Conclusion

We have demonstrated that path planning can be approximated with learning
when structured in a manner that is akin to classical path planning algorithms. We
have performed an empirical analysis of the proposed solution in photo-realistic
3D environments and have shown that in uncertain environments graph neural
networks can outperform their symbolic counterparts by incorporating rich visual
features. Our method can be used to augment a vision based agent with the
ability to form long term plans under uncertainty in novel environments, without
a priori knowledge of the particular environment. We have analyzed the empirical
performance of the neural planning algorithm with a variety of dataset sizes,
shown that the high-level planner can be coupled with a low-level policy and
evaluated the hierarchical performance on an image-goal task.

This chapter has shown the power of decomposing planning and navigation
into a hierarchy, with long-term neural planning learned through supervision
and a low-level control policy learning with Deep Reinforcement Learning (RL).
As environments grow in scale and scope, and the space of actions available to
the agent grows, the requirement of decoupling planning and action becomes
ever more essential. In the following chapter, we explore hierarchical topological
approaches in vast simulated worlds, with an end application of navigation in
video games.
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G R A P H A U G M E N T E D D E E P R E I N F O R C E M E N T
L E A R N I N G I N T H E G A M E R L A N D 3D
E N V I R O N M E N T

Chapter abstract

In this chapter we address planning and navigation in challenging 3D video
games featuring maps with disconnected regions reachable by agents using
special actions. In this setting, classical symbolic planners are not applicable or
difficult to adapt. We introduce a hybrid technique combining a low level policy
trained with reinforcement learning and a graph based high level classical
planner. In addition to providing human-interpretable paths, the approach
improves the generalization performance of an end-to-end approach in unseen
maps, where it achieves a 20% absolute increase in success rate over a recurrent
end-to-end agent on a point to point navigation task in yet unseen large-scale
maps of size 1km×1km. In an in-depth experimental study, we quantify the
limitations of end-to-end Deep RL approaches in vast environments and we
also introduce “GameRLand3D”, a new benchmark and soon to be released
environment built with the Unity engine able to generate complex procedural
3D maps for navigation tasks.

The work in this chapter has led to the following workshop paper:

• Edward Beeching, Maxim Peter, Philippe Marcotte, Jilles Dibangoye, Olivier
Simonin, Romoff Joshua, and Christian Wolf (2022b). “Graph augmented
Deep Reinforcement Learning in the GameRLand3D environment”. In:
Association for the Advancement of Artificial Intelligence Conference on Artificial
Intelligence (AAAI). Workshop on Reinforcement Learning in Games.

6.1 Introduction

The work presented in this chapter was performed during a 4-month an industrial
intership at Ubisoft LaForge, Montreal. The focus of which was applications
for Deep Reinforcement Learning (RL) approaches in video-games. Long term
planning and navigation is an important component when looking to realistically
control a non-player character (NPC) in a video-game. Whether the NPC is player
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Figure 6.1: An example Navigation mesh. The proposed hybrid planner is capa-
ble of performing real-time navigation in complex 3D gaming environ-
ments featuring geometrically disconnected regions only reachable by
agents through special actions. These environments are difficult for
approaches based on the NavMesh.

facing or used for automated testing to find bugs and exploits, the ability to
navigate in a complex environment is paramount and is the foundation of every
NPC. In the field of video games the Navigation Mesh (NavMesh) (Snook 2000)
has become the ubiquitous approach for planning and navigation. In recent years,
the sheer scale of video game environments have highlighted the limitations of
the NavMesh, particularly in games with complex navigation abilities such as
double jumping, teleportation, jump pads, grappling hooks, and wall runs. Given
the successes of Deep Reinforcement Learning (RL) in domains of navigation
(Mirowski et al. 2016; Jaderberg et al. 2016b; Jaderberg et al. 2019), board games
(Tesauro 1994; Silver et al. 2016b; Silver et al. 2017) and Atari video games (Mnih
et al. 2013; Hessel et al. 2018a; Hafner et al. 2020), recent works (Alonso et al. 2021)
have looked to exploit these approaches for navigation in large 3D video game
environments. These works have shown promise in smaller game worlds, but
have highlighted that as environments scale to hundreds of thousands of square
metres, the limitations of end-to-end learning-based methods are encountered.

Currently, with few exceptions, navigation in video games relies on the NavMesh,
which is created and used as follows.

1. A graph representation of the world is pre-generated from the game geometry.
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2. At runtime a pathfinding algorithm such as A* (Hart et al. 1968b) is run on this
graph to find the shortest path between two locations in the game.

3. A player controller, attached to the character, is used for point based navigation
to follow the sequence of way-points returned by the planner.

While the navigation mesh provides a compact representation of the world, it is
somewhat limited and results in disconnected regions in complex environments,
as demonstrated in Figure 6.1. The disconnected regions are due to some assump-
tions of the underlying NavMesh generation algorithm. The user can provide the
maximum inclination and height the agent can walk and jump, but more complex
actions such as double jumping or using a jump pad are not taken into account.
Connections due to special character abilities such as jump pads, grappling hooks
and teleporters often involve time consuming manual editing of the graph in order
to add additional links. While human intervention is possible, it is not feasible
when the environments are procedurally generated as there can be a limitless
number of new environment instances. Some automatic approaches do exist but
are currently limited to simple actions (Axelrod 2008; Roumimper 2017; Budde
2013).

Recent works have looked to address this problem with an end-to-end Deep
Reinforcement Learning (RL) approach (Alonso et al. 2021) and have shown that
when trained and evaluated on small (50m×50m) to medium (100m×100m) sized
maps, end-to-end approaches achieve good performance. However, when eval-
uated in larger (300m×300m) environments, policies learned using RL perform
well on near and medium distance goals but poorly on farther challenging goals.
Euclidean distance is not the best measure of complexity in this case, but as the
odds of encountering a hard obstacle increase with the size of the map, it is a
decent proxy for the complexity of navigation.

In this chapter we explore a hybrid approach that aims to combine the strengths
of a classical graph-based NavMesh, with the capacity of end-to-end RL to
incorporate complex abilities to improve navigation performance. Designed
around the stringent constraints of online gaming environments, our method is
able to generate new navigable graphs with low computational complexity. The
proposed graph augmented RL agent outperforms the generalization performance
of a learning-based agent on a set of maps of 250m×250m. In addition, the
augmented approach also greatly improves the performance of a map specific
agent that is trained and evaluated on a fixed game world of 1km×1km, 10 times
larger than those typically used in the research community (Alonso et al. 2021).

We also introduce the “GameRLand3D” environment, a new benchmark, which
pushes the size and complexity of gaming environments to new limits. It features
realistic production-size maps as well as well as complex navigation tasks suited
for modern 3D video games featuring navigation actions like jumps, pads, zip
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lines etc. We think this benchmark is well suited to quantify the performance of
end-to-end approaches and to explore potential novel solutions.

Our contributions are as follows:

• We quantify the limitations of the performance of end-to-end Deep RL ap-
proaches in complex and large-scale environments.

• We propose a novel hybrid graph and RL approach that decouples long dis-
tances planning and low level navigation and outperforms end-to-end Deep RL
methods in both a generalization and map specific setup. Notably, this approach
provides interpretable plans which can be tweaked by a game designer in order
to modify the agent behavior without the need to fully retrain it.

• We release of an open-source 3D procedural environment in Unity which can
generate complex 3D worlds of more than one million square meters.

• We introduce a detailed empirical evaluation and ablation of two hybrid RL and
graph based approaches, with a special focus on their run time performance, a
key requirement of video games operating in real time at 60 frames per second.

6.2 Related work

6.2.1 Deep RL environments

There has been a proliferation of new Deep RL environments in the last five years,
the most well known being the gym framework (Brockman et al. 2016) which
provides an interface to fully observable games such as the Atari-57 benchmark
and several continuous control tasks. There are a variety of partially observable
3D simulators available, starting with more game-like environments such as the
ViZDoom simulator (Wydmuch et al. 2018), DeepMind-Lab (Beattie et al. 2016b)
and Malmo (Johnson et al. 2016b). A number of photo-realistic simulators have
also been released such as Gibson (Xia et al. 2018) and AI2Thor (Kolve et al.
2017a). The highly efficient Habitat-Lab simulator (Savva et al. 2019a) builds on
the datasets of Gibson and AI2Thor and implements a number of benchmark 3D
navigation tasks. The aforementioned environments were designed to train and
evaluate RL agents in relatively small environments of the order of hundreds
of square metres, with relatively small action spaces. Moreover, they do not
consider the complex actions that are in modern video games, such as double
jumping, teleportation, jump pads, grappling hooks, and wall runs. The objective
of the GameRLand3D environment, shown in Figure 6.2, is to provide a realistic
benchmark for real world video game environments, to identify the limitations
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Figure 6.2: A vast, 1km by 1km procedurally generated map generated with in
the GameRLand3D environment.

of current learning-based techniques and to allow reasearcher to explore novel
alternatives.

6.2.2 Classical planning and navigation in video games

Existing methods for path planning in the video game industry mostly rely on
building a Navigation Mesh (NavMesh)(Snook 2000). A NavMesh is a 2D/3D
graph whose nodes represent convex polygonal regions of the walkable space,
typically triangles, and whose edges indicate possibilities of navigation between
regions. To find a path between two locations in the world, one can then apply
path finding algorithms like A* (Hart et al. 1968a) or one of its variants on this
graph. This classical approach is robust for many applications but presents some
limitations. In particular, when it is possible for the agent to use mobility actions
(like dashing, jumping, double jumping, using a jetpack), the high number of
places it can reach from each location dramatically increases the connectivity of
the NavMesh (Alonso et al. 2021; Gordillo et al. 2021). Therefore, it increases its
memory cost as well as the runtime cost of the pathfinding algorithms, to the
point where using a NavMesh ends up being too costly, constraining game design.
Another important aspect that a NavMesh does not account for is the kind of
constraint that a character can have, such as the turn radius of a car or a plane
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in 3D. This kind of constraint can be impossible to encode in a NavMesh in an
efficient manner.

Contrary to NavMesh-based approaches, RL for point-to-point navigation
merges the path finding and the character controller (code the agent actually
uses to move and follow the path) components by directly outputting actions the
agent needs to take at every step to go from point A to point B. This makes using
RL especially attractive since it could compress the semantics/topology of the
map in a much more efficient way while having a fixed low cost to run.

6.2.3 Neural approaches to navigation

The field of Deep Reinforcement Learning (RL) has gained attention with successes
on board games (Silver et al. 2016b) and Atari games (Mnih et al. 2015a). Recent
works have applied Deep RL for the control of an agent in 3D environments
(Mirowski et al. 2016; Jaderberg et al. 2016b), exploring the use of auxiliary tasks
such as depth prediction, loop detection and reward prediction to accelerate
learning. Other recent work uses street-view scenes to train an agent to navigate
in city environments (Mirowski et al. 2018b).

To infer long term dependencies and store pertinent information about the
partially observable environment, network architectures typically incorporate
recurrent memory such as Gated Recurrent Units (Chung et al. 2015b) or Long
Short-Term Memory (Hochreiter et al. 1997a). Extensions to memory based
neural approaches began with Neural Turing Machines (Graves et al. 2014) and
Differentiable Neural Computers (Graves et al. 2016) and have been adapted to
Deep RL agents (Wayne et al. 2018b).

Spatially structured memory architectures have been shown to augment an
agent’s performance in 3D environments and are broadly split into two categories:
metric maps which discretize the environment into a grid based structure and
topological maps which produce node embeddings at key points in the environ-
ment. Research in learning to use a metric map is extensive and includes spatially
structured memory (Parisotto et al. 2017a), Neural SLAM based approaches
(Zhang et al. 2017b) and approaches incorporating projective geometry and neural
memory (Gupta et al. 2017a; Bhatti et al. 2016b). These techniques are combined,
extended and evaluated in (Beeching et al. 2020c; Wani et al. 2020). Research com-
bining learning, navigation in 3D environments and topological representations
has been limited in recent years with notable works being (Savinov et al. 2018a)
who create a graph through random exploration in the ViZDoom RL environment
(Wydmuch et al. 2018). (Eysenbach et al. 2019a) also performs planning in 3D
environments on a graph-based structure created from randomly sampled ob-
servations, with node distances estimated with value estimates. (Beeching et al.
2020e) perform topological planning with a neural approximation of a classical
planning algorithm that can be applied in uncertain environments. Other recent
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Figure 6.3: Agent observations. Left: An agent’s depth observation in the GameR-
Land3D environment. Right: the resulting 2D observation in tensor
form, that will be processed by the agent’s CNN.

approaches such as (Chaplot et al. 2020e) build a graph structure, but rely on 360

degree camera measurements. Practically all of the aforementioned approaches
are applied in small planar environments of hundreds of square metres, and
scaling these methods to the environment where we apply our hybrid approach
poses several challenges. Availability of ground truth: most graph based methods
require ground truth actions and graph connectivity, as the calculation of optimal
actions is often intractable in 3D environments of hundreds of thousands of square
metres this precludes this possibility. We are also constrained due to inference
time: many of these methods do not operate at real time speed, particularly when
controlling hundreds of agents in parallel.

6.3 Environment and task de�nition

In order to address the challenging problem of navigation in vast complex 3D en-
vironments we have developed the GameRLand3D environment. GameRLand3D
allows the creation of enormous worlds and enables complex interactions such
as double jumping and jump-pads, includes buildings, water and lava hazards.
The environment is built using the Unity-ML agents (Juliani et al. 2018) frame-
work, which provides a versatile tool to build RL environments. We interact with
the environment by controlling an agent, represented as a 1.8 meter humanoid
character, shown in Figure 6.3.

Our environment implementation uses 3D Perlin noise (Perlin 1985) for the
procedural generation of the game world, followed by random placements of
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buildings, plateaus and jump pads to create a challenging state space for agents
to interact with, explore and navigate.

6.3.1 Task

The task we consider is point-to-point navigation where the agent is spawned
at a location pspawn and must navigate to a goal location pgoal. Start and goal
locations are sample from navigable terrain, using a NavMesh for simplicity,
through a function fnavmesh from which we can sample valid navigation locations.
The NavMesh contains many disconnected regions and cannot be directly used
for long distances navigation, but can be used to identify valid spawn locations.
To reduce overall inference time and to allow for planning over longer time
horizons, we request a decision from the agent’s policy network every 10 time-
steps, repeating the actions for the intermediary 10 steps.

6.3.2 Constraints

Video game environments provide certain advantages for training RL agents when
compared to learning a model that may be transferred to the real world. The pose
of the agent is known and we are not expected to rely on noisy pose estimates and
fulfill safety guarantees, which add an additional challenge to robotic navigation.
Video games do have other requirements and constraints, model implementations
must be highly optimized, parallelized and run at real time speeds, making
decisions at a minimum of 60 times per second. If an agent is player facing, its
behavior must be credibly "human-like", a subjective metric that is discussed in
(Devlin et al. 2021). Ideally, methods should provide interpretable information, so
that game designers can be confident about adopting it in production.

6.3.3 Observations

Rendering agent observations from the environment with a virtual monocular
camera is prohibitively expensive for NPC control in video games, so the agent’s
observations are a depth measurement of a 8×8 cone of raycasts in front of the
agent (see Figure 6.3). We also provide useful information such as the location of
the goal in the agent’s frame of reference, the agent’s velocity and acceleration.

6.3.4 Actions

The environment actions are continuous and correspond to actions that are
typically available to a human player: forward, backward, strafe, turn, jump and
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Figure 6.4: The generalization gap in performance between a map specific re-
current agent trained on a single map and a general recurrent agent
trained on 128 maps and then evaluated on the same unseen map.
Compared against a Graph augmented RL agents, introduced in this
chapter.

double-jump (where a player can execute a second jump while in mid-air). The
jump action is treated like a continuous action for the RL policy and is discretized
in the environment.

6.3.5 Rewards

Building on the work of (Alonso et al. 2021), we combine three rewards: A sparse
reward of +1 when the agent succeeds in the task and -1 when the agent fails. A
dense reward every step in which the agent reduces its best euclidean distance
to the goal location, divided by a normalization factor λ. A time-step penalty of
-0.0005 per step, to encourage the agent to perform the task quickly. An episode is
terminated when the agent is within 1m of its goal, the agent falls off the map
or the agent has not decreased its best euclidean distance to the goal for 300

time-steps.

6.4 Empirical evaluation of end-to-end methods

We initially trained a baseline policy, in order to quantify the empirical perfor-
mance of end-to-end Deep RL approaches in such large-scale worlds. In particular,
we were interested in generalization, how well a policy trained in one set of
environments transfers to a new environment. The baseline policy was trained
using a recurrent version of a sample efficient off-policy actor critic RL algorithm,
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Soft Actor Critic (SAC) (Haarnoja et al. 2018a), with a learned entropy coefficient
and no state value network (Haarnoja et al. 2018b). The SAC algorithm aims to
finds a policy that maximizes cumulative reward and the entropy of each visited
state.

π∗ = arg max
π

T

∑
t=0

E(st ,at)∼ρπ
[r (st, at) + αH (π (· | st))] (6.1)

We include a learnable entropy temperature parameter τ, to enable automatic
optimization of the entropy of the objective function. We found that having
independent policy and Q-network embeddings improves the reliability of the
Q-value estimates and led to more robust, stable training. We trained several
versions of the baseline agent architecture. A reactive agent that receives the 8x8

raycast observation and a memory-based recurrent agent that extends the reactive
agent with an LSTM in order to be able to learn longer term dependencies. We
use a burn-in of 20 time-steps to initialize the hidden state as recommended in
(Kapturowski et al. 2018; Paine et al. 2019).

In order to quantify the reduction in performance when a policy is learned on
one specific map or when a policy is learned on a set of maps and evaluated on
another, we trained two versions of the memory based agent: a general agent
and a map specific agent. The general agent is trained on a large dataset of
128 procedurally generated map instances. During training we evaluate the
performance of the policy on a set of 4 validation maps and keep the model with
the highest success rate. In addition, independently we train 4 map specific agents,
one per test map, the objective being to quantify the decrease in performance, or
generalization gap, between the map specific and general agent, see Figure 6.4. The
graph augmented methods that we discuss in the following section use the general
baseline for point-to-point navigation and achieve comparable performance to the
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map specific agent. We note that a general agent is a crucial requirement in the
video game production setting, as it removes the need of retraining on every new
map instance.

6.5 Graph augmented RL agents

Pure end-to-end training of vanilla agents with recurrent memory leads to sub-
optimal solutions for large and complex environments, as planning is performed
on memory without spatial structure. While spatial organization of neural mem-
ory can be learned implicitly in principle, as shown by the emergence of grid-cells
in unstructured agents trained for localization (Cueva et al. 2018), in practice this
remains a hard task, in particular from reward alone. On the other hand, and
as mentioned, the NavMesh alone is hardly applicable in the presence of special
agent actions leading to disconnected regions.

We address this problem and propose a hybrid method which combines a
directed graph (digraph) for planning and way-point to way-point navigation
with a low-level policy trained with RL. This approach decomposes the problem
of navigation over long distances into sequences of smaller sub-problems. The
motivation is that (i) small-scale way-point navigation can be learned easily
through reward, even in the presence of disconnected regions accessible with
jump actions; (ii) large-scale navigation in a connected graph can be solved
efficiently with optimal symbolic algorithms, like Dijkstra’s algorithm or A*.
We will show that the proposed method features a high success rate, provides
interpretable paths and allows for identification of disconnected regions in the
environment topology.

We explored several variants of the proposed method, which differ in the way
how they dynamically create graphs when a new environment is spawned. For all
variants, we build a graph G comprised of a set of vertices V and edges E, where
edge e(i, j) connects vertex vi to vertex vj. Each edge has a cost c(i, j). Assigned
to each vertex is a 3D position in the game. Planning from a position pstart to a
goal position pgoal is performed by identifying the nearest vertex in the graph to
the starting position vstart and the nearest vertex to the goal position vgoal. The
optimal sequence of vertex locations to traverse in order to reach vgoal is found
with the classical path planning algorithm Dijkstra (Dijkstra 1959).

The process of graph creation follows three key steps: identify vertex locations,
testing edge connectivity and graph building. The following sections describe the
different methods we explored for identifying the vertex locations, edges, edge
costs and building the graph.
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6.5.1 Unconstrained random vertex placement

In the unconstrained random approach we sample n vertices from the function
fnavmesh. This provides vertices that are located on navigable terrain, but the edge
connectivity is unknown. Edge connectivity is computed by first identifying the k
nearest neighbors of each vertex and then evaluating a short point-goal episode
between each vertex and its k-nearest neighbors. If the episode is successful then
the directed edge is considered to be connected, with its cost equal to the number
of steps in the episode. Using the agent steps as a cost over the euclidean distance
leads to graph planning that takes into account local obstacles in the planning
process.

6.5.2 Distance constrained random vertex placement

We augment the unconstrained random approach with coverage criteria, in order
to spread nodes evenly across the environment and ensure that we can estimate
connectivity all over the map. We aim to identify the set of vertex positions V
that satisfy the criteria dV := maxx,y∈V,x 6=y d(x, y), where d(x, y) is the euclidean
distance between two vertex positions. We find the set of positions V using
a greedy strategy. We first calculating the optimal average distance between
vertices, assuming the environment was a planar surface, and then sampling
vertex locations from fnavmesh until no nodes are present in the proximity of the
sampled vertex location. In order to avoid infinite loops this test is repeated 100

times and after each test the distance criterion is decayed by a factor of 0.98.

Table 6.1: Evaluation on a test set of 4 maps of size 250m×250m. In addition to
general reach and memory-based policies, we include the performance
of 4 map specific policies, learned independently on each test map.
We compare against the best performance of the unconstrained and
constrained coverage-based hybrid methods.

Success rate
Method All goals Easy goals Medium goals Hard goals

Map specific LSTM baseline 0.90 ± 0.00 0.91 ± 0.00 0.89 ± 0.00 0.89 ± 0.00

General reactive baseline 0.68 ± 0.00 0.82 ± 0.00 0.62 ± 0.00 0.57 ± 0.00

General LSTM baseline 0.70 ± 0.00 0.83 ± 0.00 0.66 ± 0.00 0.56 ± 0.00

Unconstrained vertex placement 0.82 ± 0.02 0.88 ± 0.01 0.81 ± 0.03 0.77 ± 0.03

Constrained vertex placement 0.86 ± 0.00 0.90 ± 0.00 0.85 ± 0.00 0.81 ± 0.00

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI038/these.pdf 
© [E. Beeching], [2022], INSA Lyon, tous droits réservés



6.6 experiments 127

6.5.3 Optimizations

6.5.3.1 Robust estimation of edge connectivity

One weakness of performing the edge connectivity test once is that there is a
small probability that agents can introduce an edge in the graph that often fails,
leading to overconfident planning. This problem is compounded when there are
several edges in the graph that are difficult to navigate. In order to identify and
prune these edges, we evaluate an option to repeat the edge connectivity tests
several times and keep the edges where the percentage of the tests exceed a given
threshold. This approach leads to robust plans and higher performance, with the
downside of a longer graph building step.

6.5.3.2 Re-planning

Qualitative analysis demonstrated that occasionally a graph augmented agent
would fail to reach its next way-point, resulting in an agent that was often stuck as
it had fallen off the side of an obstacle. This was resolved with the implementation
of a re-planning step, where if the agent does not decrease its distance to the next
way-point for 50 time-steps we automatically re-plan from its current location to
the goal location. We observed that re-planning increased the success rate of all
the examined methods.

6.6 Experiments

6.6.1 Setup

We generate maps of size 250m×250m×80m, 128 training maps, 4 validation
maps and 4 tests maps to test the baseline and graph augmented methods. We
then scale this approach to maps of 1km×1km ×80m to evaluate the performance
in vast game worlds. Such a map is notably larger than the largest maps tested in
the literature (Alonso et al. 2021).

While other works also include the Success weighted by Path Length (SPL)
metric (Anderson et al. 2018a), we are unable to compare against this metric as
the SPL metric. As SPL requires ground truth shortest paths, which cannot be
computed in such large environments with complex action spaces. We separate
the goals into three groups, easy, medium and hard, based on distance between
the start and end points to break down the performance of each method. The
results on hard, long distance goals, are of particular interest as this is where the
baseline policy had the worst performance.
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6.6.2 Hyper-parameter optimizations

We extensively optimized the hyper-parameters of each approach and report
the results of the best performing configuration for each technique. Each test
was evaluated with three seeds in order to quantify the average and variation of
performance that can be achieved with these methods. We evaluate the perfor-
mance of each method using the success rate metric on 4 test maps, with 2,500

goals per map. As an example, we report in Figure 7.1 the evaluation of a single
method, Random vertex with coverage constraint, in numerous hyper-parameter
configurations. In this case we have varied the number of nodes and the number
of nearest neighbors with which to perform edge connectivity tests.

6.6.3 Comparisons

We evaluate the performance of the proposed graph augmented methods and
compare them to the performance of the recurrent baselines in table 6.1. We
observe that the Distance Constrained Random Vertex Placement outperforms the
baseline method with a success rate of 85.9%, an improvement of 16.3%. We
also implemented flooding and trajectory based methods which are excluded for
brevity, but are discussed in the overview video .

6.6.4 Run-time analysis

Run-time performance is critical in real time video games, where the game logic
and rendering must be executed 60 times per second. We perform an analysis
of the run-time performance of the various approaches. In particular, we are
interested in the time it takes to build the graph, to evaluate 2,500 goals on a test
map and average duration of a graph search when exploiting the hybrid approach.
Figure 6.6 summarizes the results for key sets of hyper-parameters for the Distance
Constrained Random Vertex Placement approach. While larger graphs improve the
performance of the augmented agent, they also increase the evaluation time and
the time taken to perform a graph search. There is clearly a trade-off to be made,
with the optimal choice depending on the exact use case, for an offline exhaustive
test of a map instance a higher node count is suitable. Whereas if the graph must
be created in near real-time a smaller node count would be required.

6.6.5 Scaling to production size maps

Previous experiments have focused on generalization of a learned policy to unseen
maps. We have extended our method to a vast 1km×1km×200m map. We find
that even a map specific baseline RL agent, whose policy is learned directly on
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Figure 6.6: Run-time trade-offs of the coverage constraint approach. Left: Aver-
age graph search time in ms in several configurations. Right: Average
graph construction and evaluation time in minutes on 2,500 goals.

the map it is evaluated on (environment overfit), performs poorly compared to
our hybrid agent, with an overall success rate of 72%. We augment the map
specific agent with the Distance Constrained Random Vertex Placement approach and
evaluated the performance on 10,000 goals with graphs of size 200 to 1,600 nodes.
We achieve an increase in success rate of 20% on all goals, shown in Figure 6.7.

6.7 Conclusions

We have introduced a set of graph augmented RL approaches for planning
and navigation in vast 3D video game worlds. To demonstrate the capacity
of these approaches we have developed the GameRLand3D environment, an
open-source reinforcement learning environment built in the Unity game engine.
GameRLand3D enables procedural generation of vast open world environments
with hazards such as water and lava, and features such as jump pads, buildings
and overhangs. We have identified that end-to-end Deep RL approaches under-
perform in large-scale environments. We evaluated two graph augmented RL
techniques and performed extensive hyper-parameter tests to find a reasonable
compromise between graph building time, run-time performance and success rate.
Our hybrid approaches boost generalization performance from 69.6% to 86.2%.
We also achieve a 20% increase in success rate in enormous environments.

In addition to support and maintenance of the GameRLand3D environment, our
roadmap includes the addition of more complex building types, player abilities
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Figure 6.7: Evaluation of the Random Graph with coverage approach on a sin-
gle 1km2 map with 10,000 goals. Compared against a map specific
LSTM baseline policy. Shown is goal distance, in 100m bins, compared
with the success rate of each approach. We observe that the method
begins to reach diminishing returns at 1,600 vertex locations. Overall
average success rate is increased from 72% to 92%.

such as teleportation and jetpacks, and other features such as ravines and caves.
Future hybrid approaches in this environment will investigate the possibility of
online graph building, using function approximation to predict edge connectivity
in dynamic environments where the graph must be reconstructed when there is a
change in map topology.

In this chapter, we have built a large 3D environment using the UnityML-Agents
framework. While this framework is a useful tool to the research community it
does come with drawbacks, its closed-source nature means researchers do not
have access to the underlying protocols for exchanging observations between the
python training loop and the environment running inside the Unity executable.
In addition, Unity is a pay-to-use tool, which limits accessibility. In the following
chapter, we develop an open-source tool to interface with an alternative Game
Engine, allowing researchers and game designers a free and flexible framework to
build and test simulated worlds.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI038/these.pdf 
© [E. Beeching], [2022], INSA Lyon, tous droits réservés



C
h

a
p

t
e

r 7
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Chapter abstract

In this chapter we present Godot Reinforcement Learning (RL) Agents, an
open-source interface for developing environments and agents in the Godot
Game Engine. The Godot RL Agents interface allows the design, creation
and learning of agent behaviors in challenging 2D and 3D environments
with various on-policy and off-policy Deep RL algorithms. We provide a
standard Gym interface, with wrappers for learning in the Ray RLlib and
Stable Baselines RL frameworks. This allows users access to over 20 state of
the art on-policy, off-policy and multi-agent RL algorithms. The framework
is a versatile tool that allows researchers and game designers the ability to
create environments with discrete, continuous and mixed action spaces. The
interface is relatively performant, with 12k interactions per second on a high
end laptop computer, when parallized on 4 CPU cores. An overview video is
available here: https: // youtu. be/ g1MlZSFqIj4 .

The work in this chapter has led to the following workshop paper:

• Edward Beeching, Jilles Dibangoye, Olivier Simonin, and Christian Wolf
(2022a). “Godot Reinforcement Learning Agents”. In: Association for the
Advancement of Artificial Intelligence Conference on Artificial Intelligence (AAAI).
Workshop on Reinforcement Learning in Games.

7.1 Introduction

Over the next decade advances in AI algorithms, notably in the fields of Deep
Learning (Lecun et al. 2015) and Deep Reinforcement Learning, are primed to
revolutionize the Video Games industry. Customizable enemies, worlds and
story telling will lead to diverse game-play experiences and new genres of games.
Currently the field is dominated by large organizations and pay to use engines that
have the resources to create such AI enhanced agents. The objective of the Godot
RL Agents package is to lower the bar of accessibility; so that game developers,
researchers and hobbyists can take their idea from creation to publication end-
to-end with an open-source and free package. The Godot RL Agent provides
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132 godot reinforcement learning agents

Figure 7.1: An example Godot RL Agents environment Fly By, where an agent
learns to perform way-point based aerial navigation in a 3D space.

wrappers for two well known open-source Deep Reinforcement Learning libraries:
Ray Rllib (Liang et al. 2018) and Stable Baselines (Hill et al. 2018). In addition
the interface is compatible with any RL framework that can interact with a gym
wrapper. Although the Godot RL Agents interface was predominantly designed
for the creation and prototyping of RL approaches in video games, there is nothing
prohibiting users from the implementation of tasks involving mobile robotics,
grasping or designing complex memory-based scenarios to test the limitations of
current Deep RL architectures and algorithms. The contributions the Godot RL
Agents packages are as follows:

• A free and open source tool for Deep RL research and game development.

• By providing an interface between the Godot Game Engine and Deep RL
algorithms, we enable game creators to imbue their non-player characters with
unique behaviors, learned through interaction.

• The framework enables automated game-play testing with an RL agent.

• The Godot RL Agents framework enables researchers and game designers
the flexibility to design, create and perform rapid iteration on new ideas and
scenarios.

The library is open-source with an MIT licence, code is available on our github
page:
https://github.com/edbeeching/godot_rl_agents
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Figure 7.2: The training architecture used for the Godot RL Agents interface.
Parallel actor processes collect trajectories from several environment
executables. Each environment contains multiple parallel agents, each
with their own instantiation of the environment.

7.2 Related work

The last decade has seen rapid advancement in the field of artificial intelligence,
this has been driven by the application of Deep Learning approaches and in
particular Convolutional Neural Networks (Fukushima et al. 1982; Lecun et al.
1998) . Supervised Deep Learning in its current state often considered to be
narrow AI, that performs particularly well at performing predictions on static
images but does not learn from interaction.

7.2.1 Deep Reinforcement Learning

Reinforcement Learning approaches provide the ability to learn in sequential
decision making problems, where the objective is to maximize accumulated re-
ward. As we encounter large state spaces, continuous actions, partial observability
(Åström 1965) and the desire to generalize to unseen environment configurations;
Deep Reinforcement Learning (RL) provides a general framework for solving
these problems. In recent years the field of Deep RL has gained attention with
successes on board games (Silver et al. 2016a) and Atari Games (Mnih et al. 2015b).
One key component was the application of deep neural networks to frames from
the environment or game board states. Recent works that have applied Deep
RL for the control of an agent in 3D environments such as maze navigation are
(Mirowski et al. 2017) and (Jaderberg et al. 2016a) which explored the use of
auxiliary tasks such as depth prediction, loop detection and reward prediction
to accelerate learning. Meta RL approaches for 3D navigation have been applied
by (Wang et al. 2016a) and (Lample et al. 2017b) also accelerated the learning
process in 3D environments by prediction of tailored game features. There has
also been recent work in the use of street-view scenes in order train an agent to
navigate in city environments (Kayalibay et al. 2018). In order to infer long term

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI038/these.pdf 
© [E. Beeching], [2022], INSA Lyon, tous droits réservés



134 godot reinforcement learning agents

dependencies and store pertinent information about the environment; network
architectures typically incorporate recurrent memory such as Gated Recurrent
Units (Chung et al. 2015a) or Long Short-Term Memory (Hochreiter et al. 1997b).
The scaling of Deep RL has produced some impressive results, such as in the
IMPALA (Espeholt et al. 2018c) architecture which successfully trained an agent
that can achieve human level performance in all 30 of the 3D, partially observ-
able, DeepMind Lab (Beattie et al. 2016b) tasks; accelerated methods such as in
(Stooke et al. 2018) which solve many Atari environments in tens of minutes. The
achievements in long term planing and strategy in DOTA (OpenAI 2018) and
StartCraft 2 (Vinyals et al. 2019), has demonstrated the Deep RL can learn policies
with complex reasoning and long term decision making. There has been a recent
push towards photo-realistic simulation, with the release of the Gibson (Xia et al.
2018) dataset and the Habitat simulator (Savva et al. 2019a; Szot et al. 2021). Many
research teams focus on Structured Deep Reinforcement Learning, where priors
are incorporated in the agent architecture, leading to advancements in GPS guided
point-to-point navigation (Chaplot et al. 2020b; Chaplot et al. 2020f), memory-
based tasks (Wayne et al. 2018b; Beeching et al. 2020c; Beeching et al. 2020e),
semantic prediction (Chaplot et al. 2020c; Chaplot et al. 2020d). Other approaches
aim to solve these challenging problems with scale, using distributed computing
to training larger networks for billions of environment interactions (Wijmans
et al. 2019b; Espeholt et al. 2018c). The video games industry has identified the
advancements in Deep Reinforcement Learning as an opportunity to enrich video
game experiences. With short term objectives being that of automated testing
(Gordillo et al. 2021) and content generation (Gisslén et al. 2021), and medium to
longer term being player facing bots (Alonso et al. 2021), controlled by policies
learned through interaction with the game environment.

7.2.2 Deep RL environments

There has been a large expansion to the number of Deep RL environments
available in the last five years, the most well known being the gym framework
(Brockman et al. 2016) which provides an interface to fully observable games such
as the Atari-57 benchmark. Mujuco (Todorov et al. 2012) has remained the de
facto standard for continuous control tasks, its recent open-source release can
only benefit the larger RL community. OpenSpiel (Lanctot et al. 2019) provides a
framework for RL in games such as Chess, Poker, Go, TicTacToe and Habani, to
name a few. There are a variety of partially observable 3D simulators available,
with more game-like environments such as the ViZDoom simulator (Wydmuch
et al. 2018), DeepMind-Lab (Beattie et al. 2016b) and Malmo (Johnson et al. 2016b).
A number of photo-realistic simulators have also been released such as Gibson
(Xia et al. 2018), AI2Thor (Kolve et al. 2017a), and the highly efficient Habitat-Lab
simulator (Savva et al. 2019a; Szot et al. 2021). The aforementioned environments
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Figure 7.3: Four of the example environments available in the Godot RL
Agents framework. Top left: Fly By, where the agent must learn
to fly a place between way-points in 3D space. Top right: Jumper,
where the objective is the navigated a bipedal robot between platforms,
jumping where necessary. Bottom left: Space Shooter, a 2D multi agent
scenario, where one team must shoot and and destroy the agents from
the other team. Bottom-right: Ball Chase, where the agent must learn
to collect pink fruits, while avoiding walls and obstacles.

were designed to train and evaluate RL agents in relatively small environments
and typically are somewhat inflexible to addition of new tasks, abilities and action
spaces. The Unity ML agents framework (Juliani et al. 2018), provides flexibility
in terms of design of environments and tasks, but with the downside of being a
closed-source and pay to use (if your organization has a revenue of more than
$100k per year). In addition its closed-source implementation is inflexible if you
wish to, for example, make changes to the protocol used to exchange observations
between the environment and the RL algorithm. For these reasons the platform is
somewhat prohibitive to the wider RL community.

7.2.3 The Godot Game Engine

The Godot Game Engine (Linietsky et al. 2014) is an open-source tool for develop-
ing 2D and 3D games. Currently Godot is the most popular open-source Game
Engine available and can export to MacOS, Linux, Windows, Android, iOS, HTML
and web assembly. Godot supports multiple programming languages including
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Figure 7.4: Training curves available in Godot RL Agents for the Ball Chase
environment. Shown are a subset of available statistics output during
training, Mean return, Entropy loss, Policy loss and Value loss

Python, C#, C++ and GDScript (a Python-like scripting language). The Game
Engine provides an interactive editor for the design and creation of video game
environments, characters, animations and menus, which enables fast iteration for
prototyping new ideas. Godot has all the features of a modern Game Engine such
physics simulation, custom animations, plugins and physically-based rendering.

7.2.4 Deep RL Frameworks

When it comes to applying a state of the art Deep RL algorithm, there are many
quality open-source implementations available such as RLlib (Liang et al. 2018),
ACME (Hoffman et al. 2020), SampleFactory (Petrenko et al. 2020), Seed RL
(Espeholt et al. 2019) and Stable Baselines (Hill et al. 2018) to name a few. Due to
the availability of such high-quality, featured and well tested Deep RL frameworks;
in this work we chose to design and implement an interface between the Godot
Game Engine and two well known RL frameworks: RLlib (Liang et al. 2018) and
Stable Baselines (Hill et al. 2018). Our objective is to focus on the interface and
quality examples of 2D and 3D environments. This is contrary to the Unity ML
Agents framework, which also implemented a limited set of RL algorithms.

7.3 Godot RL Agents

The Godot RL Agents framework is an interface between the Godot Game Engine
and Deep RL frameworks, allowing the creation of 2D, 3D and text-based environ-
ments, custom observations and reward functions. It is a flexible, fast and robust
interface between RL training code running in Python and the Godot environment
running interactively or as a compiled executable. We implement two forms of
parallelization in the Godot RL Agents interface: in-game environment duplica-
tion and multiprocessing with several parallel executables. The interface has been
designed to support continuous, discrete and mixed action spaces. Action repeti-
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Figure 7.5: Benchmark of interactions per second when performing multi-
process training in the Jumper environment with an action repeat
of 4. We achieve 12k interactions per second with 4 parallel pro-
cesses. Ideally scaling would be linear, future versions of Godot RL
Agents will aim to profile and optimize the scaling of environment
interactions.

tion is implemented on the environment side to avoid unnecessary inter-process
communication. Training can be performed interactively, while the environment
is running in the Godot game editor: enabling mid-training pausing, analysis
and debugging of variables. Once the user is confident with their environment
configuration though interactive testing, the environment can be exported and run
as an executable. Environment export enables accelerated, faster than real-time
physics and headless training. The connection between the Game Engine and the
Python training code is implemented with a TCP socket client-server relationship;
this allows the environment to be run locally or distributed across many machines.
We provide a standard Gym wrapper and wrappers to Ray RLlib and Stable
Baselines, which support the following algorithms.
On-policy algorithms:

• A2C/A3C (Mnih et al. 2016a)

• PPO/APPO (Schulman et al. 2017a)

• IMPALA (Espeholt et al. 2018c)

• DD-PPO (Wijmans et al. 2019b)

Off-policy algorithms:

• DQN (Mnih et al. 2013)
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• Rainbow (Hessel et al. 2018a)

• CQL (Kumar et al. 2020)

• DDPG / TD3 (Lillicrap et al. 2015b)

• APEX (Horgan et al. 2018)

• R2D2 (Kapturowski et al. 2018)

• SAC continuous (Haarnoja et al. 2018a) and discrete (Christodoulou 2019).

Other algorithms are also available such as Behavior Cloning (Wang et al.
2018), Intrinsic curiosity (Pathak et al. 2017) and Evolutionary Strategies (Salimans
et al. 2017). These pre-existing implementations enable researchers and game
developers to rapidly evaluate different baselines architectures and algorithms,
with robust implementations of state of the art RL algorithms. We detail the
distributed architecture used in Godot RL Agents in Figure 7.2.

7.3.1 Sensors

Godot RL Agents allows users to add custom sensors to their agents to observe the
environment. While simulated monocular cameras are possible, rendering is an
expensive operation and rendered images do no always provide the more pertinent
information. We provide implementations of circular and spherical "Raycast"
sensors in both 2D and 3D that perform depth measurements, essentially a virtual
LIDAR. Raycasts are a popular technique in video games and Game Engines such
as Godot offer a highly optimized raycast implementation, making ray-casts a
cheap option to augment an agent’s observation. Other custom information, such
as position, can be included in the agents observation, if the environment designer
believes it is applicable to the task.

7.3.2 Example environments

In version 0.1.0 of Godot RL Agents, we have implemented 4 example environ-
ments as a reference for researchers and game creators who wish to use our
tool to build new worlds. We have created two 3D environments and two 2D
environments. The source-code and further details (such as reward functions,
reset conditions, action spaces) of these reference implementations, is available in
our open-source repository https://github.com/edbeeching/godot_rl_agents.

7.3.2.1 Jumper

Jumper is a 3D single agent environment where the agent must learn to jump
from one randomly placed platform to the next. The action space is continuous for
turning and movement, and discrete for the jump action. The episode is terminate
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Figure 7.6: Future work, an example of a virtual monocular camera, rendering
part of a scene from the Gibson dataset, loaded as an environment in
the Godot RL Agents framework.

if the agent falls off the platform. Observations are a cone of 3D ray-casts in front
of the agent and vector pointing towards the next platform.

7.3.2.2 Ball Chase

Ball Chase is a 2D single agent environment where the agent must navigate around
room and collect pink balls. The episode is terminated if the agent hits a wall.
Observations are a circle of 2D ray-casts around the agent and vector pointing
towards the next fruit. The action space is a continuous 2D vector indicating the
move direction in x and y.

7.3.2.3 Fly By

Fly By is a 3D single environment where the agent must learn to fly from one
way-point to the next. The episode is terminated if the agent hits a leave the game
are. Observations are two vectors to the next two subsequent way-points.

7.3.2.4 Space Shooter

Space Shooter is a 2D multi-agent environment with two teams of 8 agents, where
the objective is to shoot and destroy the enemy team. Currently observations are
an array of relative positions of the enemy and friend teams. Results, observations
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and training methodology in the environment are still work in progress and will
change in the next version of Godot RL Agents.

7.4 Experiments and Benchmarks

As part of our reference implementation, we provide a PPO example with reason-
able default parameters in order to provide a good starting point for training RL
agents. We believe this algorithm is a suitable starting point, as it allows for both
continuous and discrete action spaces, is robust to hyper-parameter configurations,
and is relatively sample efficient. In Figure 7.4 we show example training curves
for the Ball Chase environment. We provide pre-trained models for all example
environments in our repository, refer to our overview video for examples of these
behaviors:
https://youtu.be/g1MlZSFqIj4.

We benchmark the interaction rate of the Jumper environment and achieve
12k environment interactions per second with up to 4 parallel processes, results
shown in Figure 7.5. Benchmarking was performed on a relatively high-end
laptop computer 1, future work on Godot RL Agents will benchmark on dedicated
hardware.

7.5 Conclusions and future work

We have introduced the Godot RL Agents framework, a tool for building 2D
and 3D environments in the Godot Game Engine and learning agent behaviors
with Deep Reinforcement Learning. We have created 4 example environments
to demonstrate the capabilities of this versatile tool. By interfacing with well
known open-source Deep RL implementations, we provide access to over 20

RL algorithms out of the box. We have implemented sensors, tools for parallel
interaction with environments, and support for continuous, discrete and mixed
action spaces.

Future work on the framework aims to include: variable size observations
coupled with attention mechanisms, text-based environments, environments with
discrete state spaces, virtual monocular cameras for vision-based agent control,
multi-modal observations (1D, 2D, text & audio) and model export for in-engine
inference of trained behaviors. We plan to extend our focus to multi-agent
environments, preliminary work in the Space Shooter environment shows this
area is a challenging area of research, with applications in both video games and
collaborative robotics.

1Dell XPS - i7-10750H (6 cores), GTX 1650 Ti, 32 GB RAM
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External datasets can also be loaded in to the Godot Game Engine. In Figure
7.6 we load photo-realistic scans from the Gibson (Xia et al. 2018) dataset, to
demonstrate that is tool can be used to build realistic 3D scenes for learning robotic
control and sim2real transfer. We believe that there are near endless possibilities
for this tool and are interesting to discuss with the research community the future
direction of this work.

We have now reached the end of the five contributions made during this three-
year PhD thesis, the following chapter will summarize our contributions and
provide perspectives on future research directions.
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8.1 Summary of Contributions

In this manuscript, we have introduced, discussed and explained five contributions
in the field of Deep Reinforcement Learning for planning and navigation in large-
scale 3D environments.

Building and benchmarking Deep RL environments � Quantifying and bench-
marking the limitations of unstructured end-to-end approaches is an ongoing
area of research in the field of Deep Reinforcement Learning for vision-based
planning and navigation. In chapter 3, we developed a set of challenging procedu-
rally generated scenarios with sparse rewards that require exploration, planning,
memory and navigation from pixels, in 3D environments. Our particular focus
was on intra-task generalization of learned policies from a known to an unknown
environment configuration. We identify which scenario configurations a recur-
rent baseline agent finds challenging and use this as a foundation for building
structured agent architectures. In addition, we quantify how many unique map
instances are required during the training of policy, in order to achieve comparable
generalization performance in a new map instance.

Improved reasoning with egocentric metric maps � An agent interacting
with a 3D world through observations made with a simulated monocular camera
has a view of the world that is based on many geometric and physical processes.
Its observations are the projection of the 3D world onto a 2D plane and the world
around the agent moves relative to its ego-motion. In chapter 4 we demonstrated
how the geometric and physical properties can be exploited as part of a spa-
tially structured hidden state, that includes a differentiable inverse projection
of Convolutional Neural Network (CNN) feature vectors from screen-space to
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world-space. We demonstrated through several benchmark scenarios, developed
in chapter 3, that this end-to-end architecture out-performs unstructured recurrent
agents in both sample efficiency and asymptotic performance. We conducted an
extensive ablation study of EgoMap architectural components, including the self-
attention and global read mechanisms. Analysis of the self-attention mechanisms
that are built into the agent’s structured memory cell provided insight into the
agent’s reasoning process, we observed that the agent attends to object of interest
in order to augment its navigation performance.

Learning to plan with topological memory � As we move to complex, seman-
tically rich and diverse environments, reconstructed from 3D scans of real-world
buildings, we must build agents that learn to exploit structural regularities in the
layouts of real world buildings, which may not be present in synthetic scenes. In
chapter 5, we learn to incorporate free space-estimate and visual features in a
graph, collected by an exploratory agent, in order to approximate a shortest path
planning algorithm. In this work, instead of structuring our network architecture
based on physical properties of our environment, we structure based on the
operations of a path planning algorithm - Bellman-Ford. We achieve this with the
application of Graph Neural Networks to perform message passing between graph
nodes, coupled with a recurrent memory cell per node that integrates incoming
messages. A detailed ablation study of the network architecture demonstrated
that the addition of this structure is required to achieve an approximation of the
classical planning algorithm. We should stipulate, however, that the parameters
of our model do not exactly represent the operations of the classical planning
algorithm. We also demonstrate that while visual features are required to achieve
the best performance, the structure of the connection probability estimates play a
large role in the estimation of the shortest path.

Automated construction of topological maps in hectare-scale video games

� Video games provide an opportunity to test the limitations of Deep RL
algorithms and architectures in enormous environments with complex action
spaces, without the concerns of real world robotics such as safety guarantees
and sample efficiency. Videos games do come with some additional constraints,
inference time of training polices is required to be less than a millisecond on tens
or hundreds of parallel agents, ideally agent behaviors should be interpretable to
provide designers and game-creators the confidence to deploy a learning-based
approach. Game-creators also desire that agents agents should behave in a human-
like manner, in order to provide a convincing user-experience. In chapter 6 we
quantify the limitations of end-to-end Deep RL approaches for point-to-point
navigation in vast environments, through the creation of a large procedurally
generated environment called “GameRLand3D”. We then extend the performance
of a recurrent baseline agent with a hybrid graph-based approach that combines
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a classical planning algorithm with the low level recurrent policy, enabling long
term planning and navigation.

Building new worlds with an open-source Deep RL interface � As appli-
cations of Deep Reinforcement Learning (RL) become ever more present in our
society, researchers require software and tools to create environments to proto-
type new approaches and algorithms. Currently many of these tools are quite
restrictive in the types of environments you can build, require expert domain
knowledge or are pay to use. In chapter 7 we develop an open-source Deep
RL interface for a widely known open-source Game Engine. The tool we have
developed allows for researchers, hobbyists and game designers to build and
interface with worlds and games free of charge, learning agent behaviors with
state-of-the-art Deep RL algorithms. There are several applications of this open-
source tool: the construction of 3D worlds and scenarios for research into Deep
RL, to build video-games and learn player-facing agent behaviors, and automated
testing of video-games and other software applications. We demonstrate this
contribution is performant, versatile and provide several documented example
implementations of RL environments in both 3D and 2D. By providing a standard
Gym interface, we enable researched to directly plug these environments into
pre-existing Deep RL implementations.

8.2 Perspectives for future work

The contributions made during this thesis and concurrent works have led to many
exciting avenues and future research directions. We now propose some possible
directions that could be taken to build upon our publications and the publications
of our peers.

Transfer from simulation to reality As the visual quality of simulation reaches
near photo-realistic levels, the domain gap between simulation and reality becomes
small enough to explore the direct transfer of policies learned in simulation,
“sim2real”. Several examples of sim2real transfer have been conducted (Anderson
et al. 2018c; Kadian et al. 2020; Sadek et al. 2021; Jaunet et al. 2021) which
highlighted that transfer is possible with little domain adaptation, the studies
also discovered bugs and physical inconsistencies in the underlying environment
simulator.

To date, research on sim2real transfer of structured agent representations re-
mains sparse, (Gupta et al. 2017a) perform an empirical analysis of the transfer
of structured policies, demonstrating improvements in performance. Other than
(Gupta et al. 2017a), to our knowledge, there are few other contributions, indicat-
ing that this is an area where fruitful research can be conducted.
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Auxiliary losses In vast majority of the works we have published during this
thesis, the objective function which we optimize is purely based on reward.
While this poses some advantages such as the generality of the approach, it can
be prudent to add auxiliary objectives to the loss function of our training loss.
This can be particularly beneficial when the auxiliary objective is aligned with
the agents primary task. Recent works (Lample et al. 2017b; Jaderberg et al.
2016a) have shown this can accelerate learning and improve the final performance
in unstructured recurrent agents. Researchers have already demonstrated that
the performance of structured approaches can be improved through the use of
auxiliary losses. Indeed, (Marza et al. 2021) demonstrate that the performance of
spatially structured memory architectures such as EgoMap (Beeching et al. 2020c)
can be improved by added auxiliary losses based on the distance to a target object,
the direction of a target object and estimation of whether the current target has
previously been observed, their approach came first in the CVPR 2021 Multi-ON
challenge (Wani et al. 2020).

Attention-based models The use of attention-based models has revolutionized
the field of Natural Language Processing (NLP) Devlin et al. 2018; Wolf et al. 2019a
and has begun to make an impact in image-based tasks (Han et al. 2020). While
the potential of self-attention has been demonstrated in our EgoMap publication
(Beeching et al. 2020c) there has been limited research on the applications of
temporal and visual attention in the domain of Deep RL (Parisotto et al. 2020;
Chen et al. 2021). The work that has been undertaken has found that incorporating
vanilla transformers in a Deep RL agent’s architecture and training end-to-end
with RL algorithms poses several challenges related to training instability, through
residual connections and modification of the transformers gating mechanism the
instabilities can be diminished.

Multi-modal applications Multi-model applications in Deep RL enable the com-
bination of image-based observations with textual instructions and have been
demonstrated in a number of different environments (Nguyen et al. 2019; Chaplot
et al. 2019). Recently published works (Team et al. 2021) extend multi-modal Deep
RL to environments where the goal task is defined as a string of text, enabling
the learning of policies that generalize to unseen tasks sample from a universe of
possible task/environment combinations. Further extensions of this work could
combine representations that are structured in both the visual and text domains,
incorporating cross-modal attention to enable higher performance and increased
sampled efficiency.
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