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Abstract

The exponential growth in data generation has rendered the effective analysis of unstructured
textual document collections a critical challenge. This PhD thesis aims to address this challenge
by focusing on Information Extraction (IE), which encompasses four essential tasks: Named
Entity Recognition (NER), Coreference Resolution (CR), Entity Linking (EL), and Relation
Extraction (RE). These tasks collectively enable extracting and structuring knowledge from
unformatted documents, facilitating its integration into structured databases for further analytical
processes.

Our contributions start with creating Linked-DocRED, the first large-scale, diverse, and
manually annotated dataset for document-level IE. This dataset enriches the existing DocRED
[1] dataset with high-quality entity linking labels. Additionally, we propose a novel set of metrics
for evaluating end-to-end IE models. The evaluation of baseline models on Linked-DocRED
highlights the complexities and challenges inherent to document-level IE: cascading errors,
long context handling, and information scarcity.

We then introduce PromptORE, an unsupervised and open-world RE model. Adapting the
prompt-tuning paradigm, PromptORE achieves relation embedding and clustering without
requiring fine-tuning or hyperparameter tuning (a major weakness of previous baselines) and
significantly outperforms state-of-the-art models. This method demonstrates the feasibility of
extracting semantically coherent relation types in an open-world context.

Further extending our prompt-based approach, we develop CITRUN for unsupervised and
open-world NER. By employing contrastive learning with off-domain labeled data, CITRUN
improves entity type embeddings, surpassing LLM-based unsupervised NERs, and achieving
competitive performance against zero-shot models that are more supervised.

These advancements facilitate meaningful knowledge extraction from unstructured documents,
addressing practical, real-world constraints and enhancing the applicability of IE models in
industrial contexts.

Keywords information extraction, open named entity recognition, unsupervised named
entity recognition, open relation extraction, unsupervised relation extraction, natural language
processing.
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Résumé

La croissance exponentielle de la production de données a fait de l’analyse de collections
de documents textuels non structurés un défi majeur. Cette thèse de doctorat vise à relever
ce défi en se concentrant sur l’extraction d’information (IE), qui englobe quatre tâches
principales : reconnaissance d’entités nommées (NER), résolution des coréférences (CR),
annotation sémantique (EL) et extraction de relations (RE). Ces tâches permettent d’extraire
et de structurer des connaissances à partir de documents non formatés, ce qui facilite leur
intégration dans des bases de données structurées et leur utilisation par des outils d’analyse de
données.

Nos contributions commencent par la création de Linked-DocRED, le premier jeu de données
de grande taille, diversifié, et annoté manuellement pour l’IE sur des documents. Pour cela, nous
partons du jeu de données DocRED [1], que nous complétons avec des annotations sémantiques
de haute qualité. Également, nous proposons un nouvel ensemble de métriques pour évaluer les
modèles d’extraction d’information. L’évaluation de baselines sur Linked-DocRED met en
évidence les complexités et les défis inhérents à l’IE sur des documents : erreurs en cascade,
traitement de longs contextes et rareté de l’information.

Nous présentons ensuite PromptORE, un modèle d’extraction de relations non supervisé
et en monde ouvert. En adaptant le paradigme du prompt-tuning, PromptORE réalise la
représentation et le clustering de relations sans nécessiter d’entraînement ni d’ajustement
d’hyperparamètres (une faiblesse majeure des baselines précédentes) et surpasse de manière
significative les modèles de l’état de l’art. Cette méthode démontre la faisabilité de l’extraction
de relations sémantiquement cohérentes dans un contexte de monde ouvert.

En généralisant notre approche basée sur les prompts, nous développons CITRUN, un NER
non supervisé et fonctionnant en monde ouvert. En utilisant l’apprentissage contrastif avec
des données étiquetées hors domaine, CITRUN améliore la représentation des types d’entités,
surpassant les NERs non supervisés basés sur des LLMs, et atteignant des performances
compétitives par rapport aux modèles zero-shot qui sont plus supervisés.

Ces avancées facilitent l’extraction de connaissances à partir de documents non structurés,
tout en tenant compte des contraintes pratiques du monde réel et en améliorant l’applicabilité
des modèles d’IE dans des contextes industriels.

Mots-Clés extraction d’information, reconnaissance d’entités nommées en monde ouvert,
reconnaissance d’entités nommées non-supervisée, extraction de relations en monde ouvert,
extraction de relations non supervisée, traitement automatique des langues.
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ARI Adjusted Rand Index [3, 4].

BIO BIO sequence labeling. Classification convention for Named Entity Recognition [5]. See
section V.3.1.
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Mathematical Notations

When possible, they follow the ISO-80000-2 standard [10].

𝛼, 𝛽, 𝑥, 𝑦 Scalars. In lower-case and normal font.

𝜶, 𝜷, 𝒙, 𝒚 Vectors, lists, or tuples. In lower-case and bold font.

𝑨, 𝑩, 𝑿,𝒀 Tensors or matrices. In upper-case and bold font.

�̂�, �̂�, �̂� Predicted scalars, vectors, or tensors.

𝒉 Embedding (vector representation) produced by a language model.

𝜎 Softmax function.

{·} Variable substitution. {𝒎} is replaced by the text of 𝒎.

𝑡 Token. Word, part of word, or punctuation as defined by SentencePiece [11].

𝒅 = [𝑡0, 𝑡1, ..., 𝑡 |𝒅 |−1] Textual document composed of tokens.

D Domain. A collection (also called dataset or corpus) of documents 𝒅 belonging to a specific
domain. A domain is characterized by its type of text (e.g., encyclopedic, social network,
news) and topic (e.g., biomedical, scientific, politics, music). As the topic influences
the information presented in the documents, the domain also impacts entity types and
relations types.

E Entity types. The set of entity types of D.

R Relation types. The set of relation types of D.

𝕖 ∈ E Entity type.

𝕣 ∈ R Relation type.

𝒎 = [𝑡start(𝒎) , ..., 𝑡end(𝒎)] Entity mention located in 𝒅.

𝒆 = (𝕖, {𝒎0,𝒎1, ...}) Entity of type 𝕖, composed of one or more mentions 𝒎.

𝑜 Entity linking identifier. For instance, a Wikipedia URL, or a Wikidata ID.
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𝒓 = (𝕣, 𝒆ℎ𝑒𝑎𝑑 , 𝒆𝑡𝑎𝑖𝑙) Binary relation of type 𝕣, linking 𝒆ℎ𝑒𝑎𝑑 to 𝒆𝑡𝑎𝑖𝑙 . Also called relation
instance.

G = (𝑬, 𝑹) Knowledge graph G composed of a set of entities (𝒆, 𝑜) ∈ 𝑬, and a set of relations
𝒓 ∈ 𝑹.

P Prompt inputted to an EncLM, containing at least one [MASK] token.

xv

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0111/these.pdf © [P-Y. Genest], [2024], INSA Lyon, tous droits réservés



Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0111/these.pdf © [P-Y. Genest], [2024], INSA Lyon, tous droits réservés



I Introduction

Contents

I.1 Context & Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
I.1.1 Unstructured Documents . . . . . . . . . . . . . . . . . . . . . . . . 2
I.1.2 Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 3
I.1.3 Industrial and Real-World Constraints . . . . . . . . . . . . . . . . . 4

I.2 Research Directions, Main Contributions, and Publication Record . . . . . . 5
I.2.1 How to Evaluate Document-Level Information Extraction Models? . . 6
I.2.2 Realistic Unsupervised & Open-World Relation Extraction . . . . . . 7
I.2.3 Extension to Open-World Named Entity Recognition . . . . . . . . . 8

I.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

The quantity of information created each year is exponentially growing. Estimated at 30 ZB
(zettabyte)1 in 2018, it reached 120 ZB in 2023, and is forecasted to attain 147 ZB in 2024 [12].
All that information is a goldmine for knowledge-centric and data-centric applications, but
Gartner [13] estimates that only 20 % of this data is structured.

On the one hand, this 20 % is readily analyzable with specialized tools specifically designed to
exploit this structure: 1. databases (SQL and NoSQL) for indexation, 2. that are easily searchable
with specialized query languages built to benefit from this structure, and 3. visualization, analysis,
and predictive tools covering the three descriptive, predictive, and prescriptive types of business
analytics.

On the other hand, the remaining unstructured 80 %, composed of video, audio, and
unstructured textual content, is vastly underexplored, with an estimated 0.5 % being processed
and used [13]. In the context of this thesis, we restrict ourselves to textual documents. They
contain valuable knowledge, but the absence of structure and the use of natural language render
them particularly difficult to analyze. Indeed, natural language introduces ambiguity, as the
same information can be expressed in multiple ways (formulation diversity), and a phrase can
have different meanings depending on the context (polysemy or homography2):

11 ZB = 1021 B = 109 TB. This quantity is so huge that it is difficult to fathom. To give an example, it represents
100 millions hours of 4K video content.

2A polysemic word is a single word that has multiple meanings depending on the context. In contrast, homographic
words are different words (of different meanings) with the same spelling.

1
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Formulation Diversity

• Bill Gates was born in Seattle.

• The birthplace of Bill Gates is Seattle.

• Bill Gates comes from Seattle.

All these sentences express similar information with different formulations.

Polysemy and Homography

• French persons speak French.

• Georgia the U.S. state, or Georgia the European country.

The first “French” refers to the nationality, and the second to the language. The case
of Georgia is even more complex, as the two homographs are location concepts.
Disambiguating them requires understanding the textual context to identify location
hints.

This ambiguity makes unstructured documents challenging to analyze and integrate into an
application as it requires prior language understanding and disambiguation steps.

Therefore, the scientific community deployed efforts toward specialized models to analyze
unstructured documents to extract meaningful information. Once extracted, this information
can be structured in databases, which are then easily integrated and processed with existing
tools for structured data. This knowledge extraction and structuration task is called Information
Extraction (IE). IE is the primary objective of this work: analyzing unstructured documents
to extract and structure knowledge. However, IE is not new (in fact, it dates back to the first
MUC3 conference in 1987); many research directions have been explored, and it is currently
exploding thanks to the rise of (large) language models [14, 15, 16]. The relevance of this thesis
is linked to the industrial experimental constraints that originate from the practical needs of
Alteca4, which funds this work.

Indeed, Alteca is a French information technology services company specializing in digitaliz-
ing banking, insurance, and retail processes. In that context, it identified the customer’s need to
analyze various unstructured textual documents to extract and structure meaningful knowledge.
This corporate and real-world context led us to consider strong constraints such as open-world
extraction, minimizing the number of annotations required, document-level IE, and, above all,
realistically usable and deployable models. We present and detail these constraints in the next
section.

I.1 Context & Objectives

I.1.1 Unstructured Documents
We suppose to have access to a document collection (or dataset) D composed of multiple
unstructured documents 𝒅. Unstructured documents are strings with no layout or formatting

3Message Understanding Conference.
4Available at https://alteca.fr (in French).

2
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I.1 Context & Objectives

metadata; in brief, plain text. We do not consider the task of extracting text from physical
or digital documents and assume it has been done before our information extraction phase.
Although we acknowledge the benefits of format and layout to improve extraction performance,
the choice of entirely unformatted documents is motivated by two reasons.

First, the final objective is to work with company documents that may require digitalization
or standardization steps. Notably, extracting text from PDFs or employing OCR on image
documents is known to be ineffective or imprecise in preserving formatting and hierarchical
information (titles, headers, emphasis, ...). Instead of relying on potentially missing, incomplete,
and imprecise structural information, we choose to ignore this feature.

Additionally, Alteca has a partnership with Esker5, a French company specializing in
analyzing and extracting information from visually rich documents, such as invoices and
bills. These visually rich documents follow a semi-structured layout (for instance, a tabular
format), which they exploit to identify information precisely. Alteca favors their solution
for semi-structured documents. As a result, this thesis aims to explore the analysis of lesser
structured and more verbose documents, which are outside the scope of Esker’s capabilities.

Finally, it is essential to notice that we work with document collections, that is, a large set of
documents covering the same domain. It means documents that share similar topics, styles6,
or type of information. In practice, this corpus coherence is helpful for the extraction (see
chapters IV and V).

I.1.2 Information Extraction

The base definition of information extraction is “extracting structured information from
unstructured documents”. This formulation is generalistic and covers a broad spectrum of
methods and tasks: named entity recognition, relation extraction [17, 18, 19], coreference
resolution [20, 21], event extraction [22, 23], sentiment or emotion analysis [24], or form filling
[25, 26].

In the context of this work, we restrict ourselves to the task of Knowledge Graph (KG)
construction, which aims at identifying the main concepts (also called entities) of documents
and the relations that link them. Conceptually, it encompasses four tasks:

1. Named Entity Recognition (NER). It identifies the important concepts (or entities) of the
document. The extracted entities are then grouped into entity types (persons, locations,
organizations, etc.).

2. Coreference Resolution (CR). It merges the entities of a document that refer to the same
concept.

3. Entity Linking (EL). It finds a unique ID for each entity (that can be seen as a database
primary key). This step is necessary to generate structured and coherent knowledge that
is integrable in existing databases.

5Available at https://www.esker.com.
6We do not imply similar structures, but similar language level or specialized vocabulary, that is, linguistical

features specific to the corpus.

3
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4. Relation Extraction (RE). It extracts the relations that are linking two entities in a
document. The extracted relations are then grouped into relation types (workplace of,
born in, founder of, etc.).

One noteworthy challenge linked to this formulation of IE is knowledge disambiguation.
Indeed, coreference resolution and entity linking aim to solve the polysemy and formulation
diversity particularities of natural language, to provide standardized and unambiguous extracted
information readily integrable to existing (or new) databases. Without disambiguation, an IE
model would most likely construct knowledge graphs and databases that contain duplicated
nodes.

I.1.3 Industrial and Real-World Constraints

Document-Level Information Extraction Logically, as we speak of document collections,
we want to extract information from documents. Surprisingly, most IE models are sentence-
level and not document-level (see chapter II). At first glance, as a document is a list of
sentences, one can hypothesize to process each sentence separately with sentence-level models
to extract information. However, analyzing a large-scale document-level IE dataset, DocRED
[1], demonstrates that 40 % of the relational facts are cross-sentence, meaning they require
understanding multiple sentences jointly to extract them. Sentence-level models would miss
such knowledge.

Handling complete documents instead of sentences introduces many questions and challenges,
particularly 1. the complexity of encoding and keeping track of extended contexts, as well as
2. overcoming information scarcity (many entity or relation candidates but few valid ones).

Specific-Domain & Low-Resource The final objective for Alteca is to deploy our IE solution
directly on the customer’s premises, using its unstructured documents. The final business
use cases, types of documents, and domains are not fixed a priori, and we aim for maximum
flexibility. Therefore, we want IE models that can quickly adapt to the customer’s domain.

This introduces challenges to adapt 1. to the specific target domain and 2. to the target
language (most of Alteca’s customers are French). Traditional IE models are supervised,
requiring large amounts of documents from the target domain (and language) to be annotated.
This process is costly and time-consuming, especially in demanding fields (law, economics,
science, biomedical, etc.) where experts must be involved in annotation. Developing traditional
supervised approaches raises the barrier to entry and may slow the adoption among Alteca’s
customers.

Therefore, this work focuses on low-resource approaches that minimize the labeling required
to train the model. Multiple research directions can be studied: unsupervised approaches,
zero-shot or few-shot models, active learning, self-supervision, synthetic data generation, etc.

Open-World Capabilities Given a domain-specific document collection, an expert user can
define a structure (ontology) of information he is interested in extracting. This consists of
specifying the list of entity types, relation types, and constraints (for instance, the relation

4
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workplace of necessarily involves a person and a location). However, we believe being
exhaustive in this scheme identification and structuration process is difficult, if not impossible.
This incompleteness would result in missing meaningful and valuable knowledge.

Therefore, we want IE models that can extract and structure information automatically, even
from entity types and relation types not initially envisioned by the user. In brief, open-world
models. This constraint opposes the current tendency of models to be closed-world, for which
entity and relation types must be specified beforehand.

Additionally, this open-world objective is linked to the low-resource constraint. Indeed, if
entity and relation types are not exhaustively specified a priori, it is impossible to have annotated
data covering all of them.

Real-World Use Finally, in this research work, we focus on methods that are applicable in
practical scenarios. Even though it may seem a trivial and obvious constraint, we noticed,
during our literature review, that some models or typologies of models were scientifically
interesting and achieved impressive performances but were not usable in a real-world use case.
The main reasons included:

• Computational complexity. Lee et al. [27] attain O( |𝒅 |4) complexity depending on the
length of the document, making the extraction intractable with long documents.

• Execution cost. For each document and entity type, Xie et al. [28] require up to 80 large
language model calls.

• Irrealistic experimental setup. Perez et al. [29] uncover that some few-shot models
(supposed to be low-resource) need, in practice, large annotated validation datasets to
adjust their hyperparameters.

The first two points are subjective and depend on the client’s budget, but we have tried to
propose models that have a good tradeoff between complexity/cost and performance. For the
last point, we have been particularly cautious about experimental setups so that they are realistic
and as close as possible to reality.

I.2 Research Directions, Main Contributions, and Publication
Record

To summarize the context and constraints evoked previously, the main research question of this
thesis is:

How to extract structured and open-world information from unstructured and
domain-specific document collections in a realistic and low-resource experimental
setup?

This section briefly presents the main research directions we have followed to provide answers
to this research question. Before starting, we remind the reader that Large Language Models

5
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(LLMs) gained spectacular popularity from the end of 2022, that is, in the middle of our research
work. This situation was equally a scientific opportunity and a significant obsolescence risk.
Our earliest contribution (PromptORE) was published before the presentation of ChatGPT [30],
and Linked-DocRED was built before the now widespread use of LLMs in IE [31].

I.2.1 Linked-DocRED: How to Evaluate Document-Level Information
Extraction Models?

Our first step was to design a solid and objective experimental setup. This requires a complete
set of metrics to evaluate the performances of IE models and a human-quality annotated dataset
to train and evaluate methods. We came to the realization that such an experimental setup
was missing. In particular, existing datasets were either incomplete (focusing on a subset of
the tasks defined in section I.1.2), were too small, not diverse enough (few entity and relation
types), or automatically annotated (without a strong guarantee of the correction of annotations).

Therefore, our first contribution was to propose Linked-DocRED, the first manually annotated,
large-scale, document-level IE dataset. As creating and annotating a dataset from scratch was
impossible due to time and budget constraints, we proposed enhancing the existing and widely-
used DocRED dataset [1]. This dataset covers the NER, CR, and RE tasks but lacks entity linking
labels. We generated them thanks to a semi-automatic process that guaranteed high-quality
annotations. Indeed, realizing that DocRED documents were taken from Wikipedia articles, we
designed an automatic algorithm to align DocRED instances with their corresponding Wikipedia
page and mapped wikilinks with entities. Wikilinks are internal Wikipedia hyperlinks that
redirect the user to the page describing the entity. As such, wikilinks can be considered unique
IDs and, thus, valid entity linking labels. Moreover, as Wikipedia contributors manually edit
wikilinks, they constitute a free yet human-quality source of entity linking labels.

Secondly, we also proposed a complete framework of metrics to benchmark end-to-end IE
models, and we defined an entity-centric metric to evaluate entity linking by complementing the
work of Zaporojets et al. [21]. These metrics were also extended to work under an unsupervised
and open-world setting.

Finally, the evaluation of a supervised baseline IE model showed promising results while
highlighting the numerous remaining challenges: 1. cascading errors inherited from the
sequential nature of information extraction (e.g., relation extraction is based on the previously
extracted entities), and 2. the complexity of handling long documents with distant entities and
relations.

This first contribution led to the presentation of a resource paper at SIGIR’23:

• Pierre-Yves Genest, Pierre-Edouard Portier, Előd Egyed-Zsigmond, and Martino Lo-
visetto. “Linked-DocRED – Enhancing DocRED with Entity-Linking to Evaluate
End-To-End Document-Level Information Extraction Pipelines”. In: Proceedings of the
46th International ACM SIGIR Conference on Research and Development in Information
Retrieval. SIGIR’23. Taipei, Taiwan: Association for Computing Machinery, 2023. isbn:
978-1-4503-9408-6. doi: 10.1145/3539618.3591912

6

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0111/these.pdf © [P-Y. Genest], [2024], INSA Lyon, tous droits réservés

https://doi.org/10.1145/3539618.3591912


I.2 Research Directions, Main Contributions, and Publication Record

I.2.2 PromptORE: Realistic Unsupervised & Open-World Relation
Extraction

The previous Linked-DocRED contribution led us to two conclusions:

• A supervised and closed-world end-to-end IE model achieves F1 score performances
under 60 %. This level of performance is not acceptable for a deployment use case.

• It is unlikely that low-resource and open-world models will attain better results.

Therefore, instead of pushing on an implausible successful end-to-end IE task, we decided
to focus on specific IE subtasks to bring significant improvements. Our first choice turned to
open-world and unsupervised relation extraction. This setting is particularly relevant for our
constraints regarding specific domains where no annotated dataset is available and open-world
extraction where relation types are a priori unknown. Although recent approaches achieved
promising results, they heavily depended on hyperparameters whose tuning most often required
labeled data, which is incompatible with a realistic unsupervised setting.

To diminish the reliance on hyperparameters, we proposed PromptORE, our Prompt-based
Open Relation Extraction model. We adapted the prompt-tuning paradigm used in low-resource
approaches to work in an unsupervised setting and used it to embed sentences expressing
a relation. We then clustered these embeddings to discover candidate relation types and
experimented with different strategies to estimate an adequate number of clusters automatically.
To our knowledge, PromptORE is the first unsupervised and open-world relation extraction
model that does not need hyperparameter tuning.

Experiments on one general and two domain-specific datasets showed that PromptORE
widely surpassed previous state-of-the-art methods while being simpler and not needing any
hyperparameter tuning. A qualitative analysis demonstrated that PromptORE identified most
relation types without prior knowledge and provided a semantically coherent typing scheme.

This contribution led to the presentation of a long paper at CIKM’22, which was subsequently
published at the national TALN’23 conference:

• Pierre-Yves Genest, Pierre-Edouard Portier, Előd Egyed-Zsigmond, and Laurent-Walter
Goix. “PromptORE - A Novel Approach Towards Fully Unsupervised Relation Ex-
traction”. In: Proceedings of the 31st ACM International Conference on Information
and Knowledge Management. CIKM ’22. Atlanta, USA: Association for Computing
Machinery, Oct. 17, 2022. doi: 10.1145/3511808.3557422. url: https://hal.science/hal-
03858264

• Pierre-Yves Genest, Pierre-Edouard Portier, Előd Egyed-Zsigmond, and Laurent-Walter
Goix. “PromptORE – Vers l’Extraction de Relations non-supervisée”. In: Actes de la
30e Conférence sur le Traitement Automatique des Langues Naturelles. 30e Conférence
sur le Traitement Automatique des Langues Naturelles. Vol. 4. Paris, France, June 5,
2023, pp. 58–64. url: https://coria-taln-2023.sciencesconf.org/459305
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I Introduction

I.2.3 CITRUN: Extension to Open-World Named Entity Recognition
Encouraged by the successes of PromptORE, we then explored the second major task of IE,
named entity recognition, under the same unsupervised and open-world setting.

In that NER task, we also observed weaknesses in the experimental setup of state-of-the-art
unsupervised baselines. The majority of them were not open-world [35, 36, 37, 38], as they
required supervision for each entity type. Conversely, zero-shot approaches that saw rapid
progress were low-resource but assumed a closed world.

To tackle both shortcomings, we proposed CITRUN. We first adapted the unsupervised
prompting method of PromptORE to recognize and classify entity types. We then complemented
it by the use of off-domain labeled data, coming from generic domain datasets (CoNLL-2003
[39]) or synthetically annotated data (Pile-NER [40]). This off-domain data was employed
to improve entity type embedding using contrastive learning. We experimentally observed
that this embedding refinement step was beneficial, even when the domains were conceptually
and stylistically very far away. For the entity detection subtask, we observed that the most
straightforward token classification architecture was very effective, while more complex
span-based models had lower cross-domain and generalization capabilities.

Experimental results showed that CITRUN significantly outperformed LLM-based unsu-
pervised and open-world NER models while being 70 times smaller. Compared to the more
supervised zero-shot NERs, CITRUN achieved competitive results.

The work of CITRUN is currently under review for publication.

I.3 Outline
Chapter II conceptualizes and formalizes information extraction and presents a literature review
covering the recent advances and highlighting the main weaknesses and shortcomings at the
core of our contributions.

The following three chapters focus on the contributions we have listed in the previous
section. Chapter III introduces our Linked-DocRED dataset and its semi-automatic entity
linking annotation, defines the set of metrics to evaluate IE models, and assesses a strong IE
baseline. Chapter IV presents PromptORE, our prompt-based unsupervised and open-world
relation extraction model. The core of PromptORE, its relation embedding module, is adapted
for named entity recognition in chapter V, extended and complemented with cross-domain
capabilities. This allows us to use off-domain or automatically generated data to train CITRUN,
our NER model.

Lastly, we summarize our findings in chapter VI and highlight open questions and research
areas for future work.
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II Information Extraction
Technological Landmarks, Recent Advances, and Current Short-

comings
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II.3.2 Neural Information Extraction . . . . . . . . . . . . . . . . . . . . . 14
II.3.3 Encoder-Based Information Extraction . . . . . . . . . . . . . . . . . 15
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II.4 Document-Level Information Extraction . . . . . . . . . . . . . . . . . . . . 20
II.5 Open-World Information Extraction (OpenIE) . . . . . . . . . . . . . . . . . 22
II.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

II.1 Introduction
Information Extraction (IE) aims to extract meaningful information from unstructured text and
structure it to build or complement a Knowledge Graph (KG). The resulting knowledge graph

Named Entity 
Recognition

(NER)

Coreference 
Resolution

(CR)

Entity Linking
(EL)

Relation Extraction
(RE) 

Identifies the important 

entities (e.g., persons, 

locations)

Merges together the 

entities refering to the 

same concept

Extracts the relations 

linking the entities

Uniquely identifies each

entity and solves natural

language ambiguity

Figure II.1: Conceptual overview of information extraction.
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II Information Extraction

can be used for multiple downstream tasks such as recommender systems [41], logical reasoning
[42], or question answering [43]. As we have presented in the introduction, we restrict ourselves
to the task of knowledge graph construction, which encompasses (see figure II.1):

1. Named Entity Recognition (NER). It identifies the important concepts of the document
(persons, locations, organizations, etc.).

2. Coreference Resolution (CR). It merges the entities of a document that refer to the same
concept.

3. Entity Linking (EL). It finds a unique ID for each entity (stable across documents).

4. Relation Extraction (RE). It extracts the relations that are linking two entities in a
document.

These four steps can be done sequentially with an IE pipeline [44] or jointly with an integrated
IE model [20, 45].

An analysis of more than 120 recent IE papers1 shows that most of them consider only the
NER and RE tasks, 20 of them consider CR (9 of them implement a partial2 or implicit CR
model), and only 8 consider EL [20, 23, 44, 46, 47, 48, 49, 50] (6 of them implement a partial2

EL model). However, we believe coreference resolution and entity linking are important steps,
as they transform ambiguous extracted triples into structured and disambiguated nodes and
relations. The question of ambiguity in natural language is indeed essential. For instance, the
surface form of an entity mention can refer to multiple entities: Georgia, the Eastern European
country, or Georgia, the U.S. state. Conversely, an entity can be expressed with multiple surface
forms: “Anakin Skywalker” and “Darth Vader”. CR and EL constitute the bridge between
extracted triples that are ambiguous and structured knowledge that downstream applications
can use. Ignoring these two steps (especially EL) hides an important part of the complexity of
extracting information.

Writing a literature review about IE is a difficult endeavor, given the rapid pace of change in
the domain and the multiplicity of challenges, such as handling long documents, working in
specific domains without large annotated datasets, or extracting open-world information. This
situation has led to a wide and diverse spectrum of approaches. To the best of our knowledge,
recent surveys focus on a subset of IE, such as open-world IE [19, 51] (without the need to
specify entity and relation types in advance), document-level IE [18] (in opposition to the more
usual sentence-level IE), or LLM-based IE [52] (i.e., generative, in contrast with extractive IE).
This chapter provides a general overview of IE without seeking to be exhaustive, focusing on
the main methods, recent advances, and current shortcomings.

We start by defining and formalizing the conceptual tasks of IE (section II.2). We then
present the major technological landmarks of IE (section II.3) and finish with particular focuses
on document-level approaches (section II.4) and open-world methods (section II.5) that are

1We review these articles in the next sections.
2Methods based on large language models (e.g., [46, 47, 48]) benefit from their ability to handle coreferent

pronouns and concept canonicalization that brings a certain kind of CR and EL. Still, it is implicit and unable
to handle vastly different surface forms.
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II.2 Information Extraction Tasks

more applicable in a real-world scenario. This chapter highlights weaknesses and areas of
improvement that constitute the core of our contributions.

Before starting, it is essential to re-contextualize our contributions to the field’s history. In
particular, the harness of LLMs capabilities to make predictions or to annotate and generate
synthetic data, at the core of impressive advancements (e.g., universal IE, low-resource IE), are
included in this literature review but were absent during most of our contributions.

II.2 Information Extraction Tasks
As we have said in the introduction, Information Extraction (IE) aims to analyze documents 𝒅

from a datasetD to extract meaningful information (in the form of entities 𝒆 and relations 𝒓 linking
the entities) to build a knowledge graph G. 𝒅 is composed of tokens 𝑡: 𝒅 = [𝑡0, 𝑡1, ..., 𝑡 |𝒅 |−1].
Tokens can be words, part of words, or punctuation, as defined by SentencePiece [11].
G = (𝑬, 𝑹) is composed of a set of nodes 𝑬 and a set of edges 𝑹.

Nodes of G Each node is a couple (𝒆, 𝑜) ∈ 𝑬. 𝒆 = (𝕖, {𝒎0,𝒎1, ...}) is an entity composed of
an entity type 𝕖, and mentions (or surface forms) 𝒎 that appear in one or multiple documents.
A mention is defined by its text in the document: 𝒎 = [𝑡start(𝒎) , ...𝑡end(𝒎)]. 𝑜 is a unique entity
linking identifier (can be seen as a database table’s primary key). It can be a number (e.g., a
Wikidata identifier) or a string (e.g., a Wikipedia resource identifier). This unique identifier is
usually missing in most IE models.

Edges of G Each edge is a relation 𝒓 ∈ 𝑹. It is defined as a triplet (𝕣, 𝒆ℎ𝑒𝑎𝑑 , 𝒆𝑡𝑎𝑖𝑙) composed
of a relation type 𝕣, a head (or subject) entity 𝒆ℎ𝑒𝑎𝑑 , and a tail (or object) entity 𝒆𝑡𝑎𝑖𝑙 .

IE can be subdivided into four conceptual tasks (see figure II.1) that we define in the following
sections. As a side note, the distinction between these four tasks is conceptual. Prieur et al.
[44] and Li et al. [46] consider independent modules that are pipelined together to form an IE
pipeline, but many works have explored the possibility of combining these tasks together. For
instance, many group together NER and RE [53, 54, 55, 56]. Kirstain et al. [57], Dobrovolskii
[58], Lee et al. [59], and Zhu et al. [60] consider the joint NER and CR tasks. Joint CR and EL
have been explored by Zaporojets et al. [61] and Agarwal et al. [62]. Finally, some IE models
[20, 63] tackle NER, CR, and RE jointly. However, to the best of our knowledge, no integrated
(not pipelined) model has been proposed to tackle NER, CR, EL, and RE jointly.

Additionally, the ordering of the tasks is arbitrary and can be modified in practice. For
instance, entity linking can improve coreference resolution, or relation extraction can remove
ambiguity during entity linking. Among others, Zaporojets et al. [61] propose integrating
relational information extracted in 𝒅 to improve coreference resolution and entity linking (thus
positioning RE before CR and EL). Others [22, 64, 65] implement decoding algorithms to
globally select the optimal set of relations and entities considering types constraints3 (thus

3For instance, relations types impose entity types constraints: workplace of involves a person entity with a
location entity. If a candidate triplet does not respect this constraint, it can be a hint that there is no relation or
that one or both predicted entity type is not correct.
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merging the predictions of multiple steps to increase the performance).

Named Entity Recognition (NER) It aims to identify the entity mentions 𝒎 in 𝒅. Most
models (e.g., [39, 66]) also try to classify the entity type 𝕖 of each 𝒎. The list of entity types E
can be known in advance or determined by the model (open-world NER).

Coreference Resolution (CR) In a document, multiple entity mentions can refer to the same
underlying entity; they are called coreferences. Coreference resolution aims to merge coreferent
mentions in a single entity 𝒆 = (𝕖, {𝒎0,𝒎1, ...}).

In practice, Zeldes et al. [67] and Porada et al. [68] observe that there are multiple forms of
coreferences:

• Exact match. Two coreferring mentions that have exactly the same text. At first glance,
this case may seem trivial. However, multiple mentions can share the same text, yet not
corefer:

“A French person speaks French.”

Here, the first French refers to the nationality, and the second to the language.

• Modifiers. The coreferring mention is a modifier, that is, a word or a group of words that
modify the meaning of a noun (similarly to an adjective). For instance:

“Taiwan authorities have decided...”

Here, Taiwan is a noun, but its function is that of an adjective.

• Generics. The coreferring mention is a generic noun phrase. For instance:

“Microsoft released its quarterly results yesterday. The company has achieved
its yearly revenue goals.”

• Pronouns. The coreferring mention is a pronoun referring to an antecedent mention.

“Microsoft released its quarterly results yesterday. It has achieved its yearly
revenue goals.”

This variety of coreferences types has an impact on evaluation. For example, OntoNotes [69]
(one of the most widely used coreference datasets) considers all the previous coreference types,
but PreCo [70] or DocRED [1] do not annotate pronouns.

Another challenge of CR is the complexity of handling long documents because the longer
the document, the more entity mentions (that can corefer) it contains; and the number of
candidate coreference relations increases quadratically. This necessitates efficient processing
such as coarse-to-fine reasoning [27, 57, 58, 59], which aims to quickly and cheaply prune most
coreference candidates to focus on a few promising ones, for which more complex models are
used to score.
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Entity Linking (EL) Entity linking can be seen as the generalization of coreference resolution
in an inter-document setting4. Indeed, the objective of EL is to group entities 𝒆 referring to the
same concept but occurring in multiple documents. Conversely, entity mentions that share the
same text but are not the same concept should not be merged. The objective is generally to find
a unique identifier 𝑜 describing each entity 𝒆, such as a knowledge graph ID.

A typical EL model consists of three stages:

1. Candidate generation. It finds the identifier candidates for a given entity 𝒆. The methods
are based on information retrieval techniques related to search engines [71].

2. Candidate ranking. It ranks the candidates from the most probable one to the least
probable. It usually involves heuristics (such as the popularity of the candidate) [72, 73],
natural language processing treatments [61], or knowledge graph features [73, 74, 75].

3. Non-existing candidate prediction. It determines if the first KG candidate corresponds to
the entity or if a new node has to be created.

Relation Extraction (RE) Relation extraction aims to identify the entities 𝒆ℎ𝑒𝑎𝑑 and 𝒆𝑡𝑎𝑖𝑙
that are linked by a binary relation5 𝒓 and find its type 𝕣. Similarly to NER, the list of relation
types R can be known in advance or automatically determined by the model (open-world RE).

II.3 Overview of Information Extraction

II.3.1 Pre-neural Information Extraction

Information extraction is rooted in the context of the seven Message Understanding Evaluation
and Conferences (MUC) between 1987 and 1997 [77, 78, 79, 80, 81, 82]. They were financed
by the U.S. Defense Advanced Research Projects Agency (DARPA) and aimed at automatically
analyzing military messages, such as fleet reports, airplane crash reports, or rocket/missile
launches, to extract specific information.

Early approaches are “triplet-based”. They aim to extract triplets of the form (head, predicate,
tail), with head and tail the surface form of the head and tail entities, and predicate the surface
form of the relation. These triplets can then be decomposed into entities and relations. The main
weakness of these triplet-based approaches is the complexity of canonicalizing predicates [83].
The same conclusion can be said about entities: these models do not implement coreference
resolution or entity linking mechanisms, leading to duplicate nodes.

Most early methods rely on grammatical features: they often analyze pos-tagging features and
syntactic or dependency trees of documents to identify relation triplets. Triplets are extracted
using handcrafted rules [53, 84] or automatic algorithms [54]. With TextRunner, Banko et al.
[54] are the first to speak of OpenIE, an IE setting where entity and relation types are not
predefined. More recently, improvements have been made to simplify the documents to improve

4As a matter of fact, some approaches tackle entity linking and coreference resolution jointly [61, 62].
5Some works (such as [76]) study n-ary relations, but most approaches restrict themselves to binary relations.
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extraction [83, 85, 86, 87, 88], for example, by splitting multi-phrase sentences, separating
conjunctive clauses, or paraphrasing the document.

II.3.2 Neural Information Extraction

With the emergence of word embeddings and language models [14, 89, 90], purely grammatical
approaches were mostly dropped in favor of deep-learning models, with two leading architectures:
CNNs and RNNs (especially LSTM [9] and GRU [91]). These two architectures have proven
successful thanks to their ability to integrate textual context information automatically [92].

Zeng et al. [93] and Liu et al. [94] propose using CNNs to extract relations. The major
difference with previous approaches is that they do not rely on manually engineered features but
on word embeddings and achieve better results. CNNs were later complemented with attention
mechanisms [95] or external knowledge information [96].

Clancy et al. [49], Dligach et al. [92], Li et al. [97], and Manning et al. [98] implement
LSTM-based networks to extract relations and achieve similar or better results than CNN-based
methods. Recurrent models were also complemented with attention mechanisms [97, 99]. In
the connex domain of open-world IE, Stanovsky et al. [55] propose RnnOIE, the first deep
learning model that outperforms rule-based open IE models. This approach is further refined
by SpanOIE [100]. A notable paradigm that appeared with LSTMs is graph-based IE [20, 64,
76, 101, 102]. They propose to model words of a document and corresponding entity and
relation candidates into a graph. The embeddings of the nodes and edges are extracted from
LSTMs [101, 102] or calculated by applying principles similar to message passing of graph
neural networks [8, 76]. Reasoning algorithms then use this graph to identify relations. This
formulation makes it possible to encode long documents and extract distant relations. Going
one step further, Verlinden et al. [20] propose injecting existing knowledge from a KG into their
IE model (using a soft entity linking module) to improve the extractions. KG embeddings are
computed using GloVe embeddings of nodes’ descriptions or graph embeddings (with TransE
[75]). Finally, DyGIEE [64] proposes jointly learning NER, CR, and RE using a Bi-LSTM
network with multi-task learning. They empirically observe that mutualizing knowledge across
tasks improves performance and generalization compared to previous pipelined approaches.

Contrary to rule-based models that generate triples, most CNN and LSTM models are
classifiers6, meaning they tag or classify document tokens or spans to output predictions
(entities or relations). A typical classification paradigm for NER is BIO. Each token is classified
as O (not an entity), B (first word of an entity), or I (second or following word of an entity). B
and I can be specialized for each entity type (e.g., B-location, I-person). In general, relation
extraction or coreference resolution models are classifiers that take in input two previously
extracted entities [92, 94]. The problem with this formulation is that every pair of entities
has to be tested, which is computationally expensive. As a result, Stanovsky et al. [55] and
Yuan et al. [99] adapt the BIO tagging scheme for relations, leading to faster inference (often
at a cost in quality). Similarly, Lee et al. [27, 59] and Yu et al. [103] propose to prune most
relation/coreference candidates using a fast model and then refine the most probable ones using
more resources in a secondary step.

6Except Cui et al. [56] that we discuss in section II.3.4.
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CNN models are computationally efficient and good at representing local context [92], but
they struggle to encode long documents. RNNs can encode longer contexts but are inefficient
due to their sequential nature [15]. The emergence of transformers [15], solely based on the
principle of attention, and notably Encoder-Only Language Models (such as BERT [6]), opened
a wide range of possibilities.

II.3.3 Encoder-Based Information Extraction
Previous architectures and paradigms have been reused and refined using Encoder-Only
Language Models (EncLM). In particular, DyGIEE++ [22] builds upon the success of DyGIEE
[64] by replacing Bi-LSTM with BERT and formally defining and refining the entity, coreference,
and relation graph using graph neural networks (GNN) [8]. OneIE [104] prunes the graph to
respect type compatibility constraints (e.g., removing relations between incompatible entities).
Nguyen et al. [105] improve OneIE by using graph convolutional networks [7]. EnriCo [65]
adopts an alternative soft graph decoding method that globally finds the optimal set of entities
and relations that respect the type compatibility constraints. Finally, Zaratiana et al. [106]
replace the usual message passing algorithm to update GNN embeddings by TokenGT [107]
(representing nodes and edges using transformers encoder layers), allowing for more expressive
embeddings and state-of-the-art results.

Tagging [40, 108, 109, 110] and span-based [111, 112, 113] classification formats have also
been adapted for BERT. Similarly to RNN-based models, efforts have been made to decrease the
computational complexity of span-based approaches. One notable idea is table-filling: Wang
et al. [114], Ma et al. [115], and Wang et al. [116] employ bi-affine layers to fill a 2-D table
(with tokens of the input sentence in the axes). A high score on a specific cell (𝑖, 𝑗) indicates a
connection between token 𝑡𝑖 and 𝑡 𝑗 . For NER, it indicates an entity spanning tokens 𝑖 to 𝑗 . For
RE or CR, it signifies a relation between an entity starting at 𝑡𝑖 and another entity starting at
𝑡 𝑗 . TablERT-CNN [117] further shows that it is possible to maintain high performances while
freezing the EncLM parameters and using a shallow CNN. Finally, Yan et al. [118] proposes the
“PlusFormer” to replace the usual bi-affine layers. The PlusFormer generalizes the self-attention
mechanism in a table, considering the interactions between token pairs.

A novel type of IE model is based on machine reading comprehension (MRC) [119]. MRC
models are designed to answer questions about a text. Li et al. [36] propose to ask an EncLM
question-answering model to extract and type entities. Zhao et al. [108] obtain promising results
for relation extraction by asking diverse questions (paraphrasing) and aggregating the answers
with a weighted voting system.

Most of the proposed IE approaches are joint and trained thanks to multi-task learning, with
the idea that sharing knowledge between tasks is beneficial [22, 104, 108, 111]. However, PURE
[113] shows empirically that two simple span-based NER and RE models, trained separately
and pipelined together, obtain state-of-the-art results while being conceptually easier and faster
to train.

Another area of interest is pre-training (or adapting) language models specifically for IE tasks.
A foundational work is ERNIE [120], which complements the usual masked language modeling
(MLM) pre-training task with an entity modeling task. In this task, entire entities (composed
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of one or more tokens) are masked to improve the contextual association between entities and
their context. Indeed, it is very easy to predict San in the sentence “The Golden Gate Bridge is
located in [MASK] Francisco.”; but it requires more contextual knowledge integration to predict
San Francisco given “The Golden Gate Bridge is located in [MASK] [MASK].” Similarly, Soares
et al. [121] propose extending this task to pairs of entities to improve relation embeddings and
Wang et al. [112] to two other IE tasks (relation typing and entity typing). These models achieve
better results than raw BERT embeddings for IE tasks and can be used as drop-in replacements.
With the recent advances of LLMs and their impressive generative capabilities, Bogdanov et al.
[122] and Peng et al. [123] propose to use GPT [124] to annotate data and use these silver labels
to fine-tune BERT embeddings and provide EncLMs that can be used as backbones for IE tasks.

LLMs are also employed by Naraki et al. [125] to complement the annotations of manually
labeled data (to improve recall) or by Ye et al. [110] to augment few-shot exemplars by
paraphrasing. Ma et al. [109] propose using LLMs to refine complex entity and relation type
predictions. The most probable classes are presented to an LLM as a multiple-choice question,
which selects the correct answer.

Finally, Lou et al. [40] and Zaratiana et al. [66] propose “universal” or general-purpose IE
models that are trained on a wide variety of manually labeled [40] or automatically generated
[31, 66] datasets. The schema (list of entity types and/or relation types) is specified in the input,
and they are often used in a zero-shot setting, making them ideal when annotated data is scarce
or non-existent. To clarify, universal IE is rooted in generative IE, particularly LLM-based IE,
which we review in section II.3.4. However, these papers demonstrate that strong generalizability
and performance are attainable with small EncLMs.

II.3.4 Generative Information Extraction

Previously presented models are extractive: they tag, classify, or identify spans inside a
document to extract information. In contrast, generative IE models generate text, code, or
augmented languages, which are then parsed to output predictions. This prediction format has
recently gained popularity due to the rise of LLMs and the impressive results they obtain on
several NLP tasks [28, 63, 126]. However, the foundational contributions toward generative
IE predate LLMs (and even BERT). Indeed, in 2018, Cui et al. [56] proposed a Bi-LSTM IE
model based on the seq2seq architecture [91, 127] that generated the extracted information
(relation triplets) as a natural language output. This model was perfected by IMoJIE [128],
which replaced the Bi-LSTM encoder with BERT (while keeping an LSTM decoder). They also
mitigate the “stuttering problem” of [56], which tends to repeat identical triplets or generate
very close ones, by conditioning the following triple on all previously extracted. REBEL [129]
employs virtual tokens to better separate head, predicate, and tail arguments. GenIE [130]
investigates beam search to force the model to follow a predefined output scheme and reduce
hallucinations. Additionally, TANL [131] implements the Needleman-Wunsch algorithm [132]
to align the generated triples with the input text and correct them, if necessary, to reduce the
impact of hallucinations.

Built upon the successes of these foundational models, the domain of generative IE is in full
expansion, and there is no clear consensus on the most efficient design for an IE model. We list
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dichotomies that are currently explored:

• Full transformers (T5 [133, 134], BART [135]) vs. decoder-only (GPT [124, 136, 137,
138], Llama [16]). Decoder-only LMs have better scalability than full transformers, but
recent papers [139] show that small transformers can outperform larger decoders trained
on the same data.

• Frozen vs. fine-tuned. Smaller fine-tuned LLMs are ideal to run locally and attain
impressive IE performances [23], but clever prompting of frozen large LLMs can achieve
similar performances [28].

• Natural language vs. code. Code-LLMs [140] and LLM-based IE models are neck and
neck in terms of performance [23, 50, 141]. As a side note, foundational models relied
on “augmented languages” that define additional virtual tokens to separate arguments or
model classes. This paradigm has been abandoned (except for ATG [63]), and recent
approaches use, on the contrary, formats that are as close as possible to the languages
seen during pre-training.

Instead of employing augmented languages, Townsend et al. [26] and Lu et al. [47] propose
to follow a JSON format to benefit from an already known syntax. By doing so, they improve
performance compared to augmented language models. Natural language is also used by UIE
[24], which is the first universal IE model7. UIE combines two essential ideas: 1. specifying
the task and the list of classes in input (using a structure schema instructor), and 2. training the
model on various datasets covering diverse domains. UIE can then be applied to new domains
without annotated data, following a zero-shot setting. Fei et al. [142] improve UIE by merging
grammatical features (syntactic and dependency trees) in the embeddings. A weakness of
UIE underlined by Wang et al. [143] is that it produces task-specific models (for NER or RE),
not a general IE model. As a result, they propose InstructUIE, which is fine-tuned once for a
wide variety of IE tasks, and they experimentally observe that this joint training is beneficial
for task-specific performances. Ling et al. [144], Zhang et al. [145], and Wang et al. [146]
propose to implement a secondary answer verification and error correction step by prompting an
LLM a multiple choice question (focusing on challenging classes) and asking for explanations
(Chain of Thought [147]). Finally, negative sampling during training is an essential factor in
the performance of universal IE models [31, 50, 139]. Negative sampling randomly chooses
entity (resp. relation) types absent in the currently considered text to ensure the model answers
an empty list. Notably, Zhou et al. [31] find that frequency-based negative sampling (taking
into account the frequency of occurrence of the type) is more effective than uniform negative
sampling.

The use of Code-LLMs for IE was initiated by CodeIE [46]. They make the hypothesis
that programming languages naturally implement 1. a structured format that is easily parsable
and 2. structural concepts ideal for specifying a schema (e.g., classes, comments, inheritance,
typing). Experimentally, they perform better than the natural-language-based UIE [24]. This
idea is perfected by Code4UIE [148] and Code4Struct [149] that implement in-context-learning

7It predates USM [40] we have mentioned in section II.3.3.
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to select few-shot exemplars and propose a dual-stage model that first identifies the mentioned
types (using the Python import syntax) and then predicts entities and relations associated to
the previously identified classes. Bi et al. [150] ask the Code-LLM to generate extraction
explanations in code comments. GoLLIE [23] and KnowCoder [48] further enhance CodeIE
by adding the concepts of inheritance (to model hierarchy of types), type hints (to model type
constraints for head and tail entities of a relation), or class comments (for type descriptions and
zero-shot examples).

Frozen LLMs are not out of the picture. A method that stands out from the crowd is ChatIE
[151]. They propose a dual-stage raw prompting method that first probes the list of entity (resp.
relation) types expressed in the document and then iteratively identifies entity (resp. relation)
belonging to each type8. Sun et al. [141] propose automatically annotating in-context-learning
exemplars with GPT and using them in the prompt. Although the annotation of exemplars is
imperfect/automatic, they observe that it improves performance compared to prompting without
them. In addition, Xie et al. [28] implement an ensemble method (with different prompts and
sampling parameters) to refine exemplars annotations, resulting in scores equivalent to those of
fine-tuned approaches9.

A recurring concept with generative IE is Chain of Thought [147]. The model is asked to
explain each extracted information (entity, relation, or triplet). This process positively impacts
frozen or pre-trained LLMs [126, 152, 153, 154]. Interestingly, Wadhwa et al. [152] propose to
generate an explanation by a large LLM (e.g., GPT-3 [155]) and fine-tune a small transformer
(T5) to reproduce this explanation, leading to improved results.

An area where generative IE particularly shines is low-resource IE. We can summarize the
contributions in three directions.

First, universal IE (e.g., [23, 24, 48, 143], see previous paragraphs) proposes general-purpose
IE models that are trained on a wide variety of manual or synthetic datasets and for which
the user can specify the extraction scheme (classes and structure). They can be applied to
new domains, with previously unseen types, and without annotated data (zero-shot) while still
performing honorably.

Second, LLMs allow the creation of synthetic data of unseen size and quality (compared
to distant-supervision [156, 157]). This data can be used as in-context-learning exemplars
[50, 141], or to fine-tune IE models (e.g., UniversalNER [31], NuNER [122]). It is interesting
to notice that naive synthetic document generation does not work. Indeed, Josifoski et al.
[158] observe that, without constraints, it is impossible to obtain diverse (in terms of domains,
entities/relations, types) documents valid for training. To tackle this problem, Zhou et al. [31]
and Bogdanov et al. [122] propose to use actual documents (taken from the Pile Corpus [159])
and annotate them with an LLM, ensuring domain coverage. Josifoski et al. [158] take the
opposite direction: they generate realistic entity/relation graphs and prompt an LLM to create
the text corresponding to the graph.

Finally, with their low-resource learning and generation capabilities, we see recent human-

8As an aside, it is interesting to notice that they reverse the usual extract then type process employed by most
non-generative approaches.

9One weakness of their approach is that it is costly as it requires numerous prompting per sentence.
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in-the-loop applications. For instance, InteractiveIE [160] structures information with LLM
prompting in an unsupervised setting and involves a human annotator to merge or split clusters
at a high level that are then used for subsequent extractions. Dagdelen et al. [25] propose
manually annotating a small sample of data. This small amount of data is used to bootstrap
an active learning10 process where an LLM is fine-tuned on documents and automatically
annotates new documents checked and complemented by a human annotator. This method
seems promising in specific domains where universal IE struggles.

Is Information Extraction Solved by Large Language Models? [161] With everything
we have mentioned in the previous paragraphs, we can only observe that LLMs have invaded
IE. Although the proposed methods are conceptually and technically simple, they achieve
impressive results, particularly for low-resource and universal IE. Hence, we raise the question,
as do Han et al. [161]: do LLMs solve information extraction?

It is impossible to answer definitively, as one cannot foresee the future, but we want to
highlight two discussion points.

First, regarding raw performance against other architectures, Han et al. [161] observe that
generative IE outperforms encoder-based models on simple tasks (NER, sentence-level RE)
but fails on more complex ones (fine-grained NER, document-level RE). In particular, for RE,
most generative IE models [23, 153] are evaluated on ACE0411, ACE0512, SciERC [64] or
CoNLL-2004 [162]. These datasets have few relation types (6 for ACE04 and ACE05, 7 for
SciERC, or 5 for CoNLL-2004) and contain only sentences. The tests done on complex RE
datasets, for instance, DocRED [1], which contains documents annotated with 96 relation types,
show that generative IE falls behind encoder-based IE. The question of size is also a critical
factor: the small performance gains for easy tasks brought by LLMs do not counterbalance
their large size for every user.

However, we believe hybrid approaches combining generative and conventional IE may be
a more reasonable short-term future. For example, Zaratiana et al. [63, 66] and Ding et al.
[139] show that small encoders or transformers attain state-of-the-art-results when trained
on LLM-annotated data. Independently, Ma et al. [109] find that LLMs can help to refine
predictions on arduous instances. They advocate the use of small models to decide most of the
cases and LLMs only when there is uncertainty or ambiguity.

The second discussion point may be more fundamental. Information extraction historically
exists because of the need to explicitely extract and structure information that downstream
applications can easily use. It is, in fact, the primary motivation of this thesis. However,
with the development of LLMs that 1. encode a large amount of general [163] or specific
[164] knowledge, and 2. integrate contextual knowledge in their answer thanks to, for instance,
Retrieval Augmented Generation (RAG) [165], one can imagine a fully implicit knowledge
pipeline. In that case, knowledge is never explicitly extracted nor structured into a KG but
implicitly taken into account by the LLM when answering a question. Similarly to Pan et al.

10Active learning is a bit misleading. No particular instance selection strategy was implemented other than random
sampling. But the general active learning select, predict, correct, and improve procedure is implemented.

11Available at https://catalog.ldc.upenn.edu/LDC2005T09.
12Available at https://catalog.ldc.upenn.edu/LDC2006T06.
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[166], we believe such an implicit pipeline is currently unreasonable, in particular, due to the
hallucination problem [167, 168]. On the contrary, KG seems to be beneficial for LLMs, as
incorporating structured knowledge during the RAG process improves the overall result [169,
170, 171].

II.4 Document-Level Information Extraction

Document-level IE introduces two major challenges:

• Long documents. Encoding and understanding a long context is a difficult task. Addition-
ally, relations can span multiple sentences, and therefore, conventional sentence-level IE
may miss those relations. Indeed, an analysis of the document-level DocRED [1] dataset
shows that more than 40 % of relations are multi-sentence and cannot be captured by
sentence-level models.

• Combinatorial explosion. The number of relation candidates evolves quadratically
depending on the number of entities. Logically, a document of 𝑛 sentences contains 𝑛2

times more relations candidates than a single sentence. Most candidates are not true
relations: a document-level IE model is confronted with high scarcity [172].

In practice, due to the complexity of the task, most works focus only on relation extraction
and assume that entities and coreferences have been perfectly extracted (except for [126, 141,
173, 174, 175] that we discuss in the last paragraph). To our knowledge, the first document-level
RE model was created by Swampillai et al. [172]. It was based on the grammatical analysis of
the sentence with an SVM classifier. They highlighted the problem of high levels of negative
candidates and proposed learning a threshold to adjust the predictions accordingly. Currently,
methods to handle long context and scarcity can be divided into graph-based and sequence-based
approaches.

Graph-based RE DISCREX [101] proposes organizing the document in a graph, where
nodes are words of the documents, edges are syntactic dependencies between words, links
between words and their sentences, and coreferences. Relations are predicted by reasoning over
the graph. Peng et al. [76] propose to refine node and edge representations using graph LSTMs.
EoG [102] changes the perspective of the graph; the nodes are now entities/mentions, and edges
are coreferences, mention to entity links, or mention to sentence relations. Zeng et al. [176]
introduce dual graphs, with a mention-level graph (similar to [102]) and another higher-level
entity-level graph. This allows them to represent low-level information and to structure and
refine it in the higher-level graph (e.g., entity embeddings are the average representation of their
mentions). Embeddings are updated thanks to graph convolutional networks [7]. Zhang et al.
[177] explore multi-hop reasoning to tackle relations where entities are never mentioned in
the same sentence. Finally, POR [174] pushes this multi-hop reasoning further with attention
mechanisms and breadth-first search.

20

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0111/these.pdf © [P-Y. Genest], [2024], INSA Lyon, tous droits réservés



II.4 Document-Level Information Extraction

Sequence-based RE Graph-based approaches are complex and slow at inference. As a
result, Zhou et al. [178] (ATLOP) explore the possibility of attaining state-of-the-art results
without using graphs. To mitigate the scarcity problem, they propose to compute a per-instance
prediction threshold and implement an attention mechanism to model the interaction between
subject and object entities. In another direction, PAEE [179] proposes a coarse-to-fine approach
to quickly filter most entity pairs that are not related (using pair-aware representations) to focus
on the most probable relation candidates.

Huang et al. [180] are the first to propose evidence-based RE. They postulate that, given
a relation candidate, reducing the context to focus only on the essential sentences for this
candidate improves the results. To do so, they propose simple heuristics to select at most three
sentences for a given candidate. This method is perfected by Xie et al. [181] and Ma et al.
[182], who model evidence extraction jointly with RE and learn it multi-task (going further than
simple heuristics). Xu et al. [173] and Xiao et al. [183] propose jointly training NER and CR
with evidence extraction and RE, anticipating that RE can benefit from these subtasks. Finally,
DocGNRE [184] enriches document-level datasets with automatically generated documents
(with GPT-3), as well as filtering extracted relations with a natural language inference model
[185].

Finally, Verlinden et al. [20] and Wang et al. [186] explore the injection of external knowledge
about entities (coming from a KG) using entity linking. In particular, KIRE [186] is directly
pluggable on existing RE models (such as ATLOP [178]) and consistently brings performance
improvements.

Recently, some methods explored the joint document-level NER and RE tasks. Dong et al.
[187] apply a similar principle as the generative IE model of Cui et al. [56]. JEREX [188]
proposes multi-task learning for NER, CR, and RE. Zhang et al. [145] unifies the CR and RE
tasks together (as coreference can be considered a specific type of relation). They employ a
table-filling approach [115] to reduce the computational complexity and represent candidates
in a graph whose embeddings are refined using graph neural networks. Finally, Xue et al.
[126] and Sun et al. [141] explore the applicability of LLMs for joint NER and RE. GenRDK
[141] implements in-context-learning with GPT-generated examples (and thus is working in a
complete zero-shot setting). Xu et al. [52] test different ways to formulate the task and fine-tune
small LLMs. They observe that the best approach is first to identify relation types, then the
subject entities, and finally, object entities (three prompts). However, a performance analysis
shows that these methods struggle to surpass 50 % – 60 % in F1 score, which makes them
unusable in real-world scenarios. This demonstrates the challenges linked to document-level IE.

Finally, to the best of our knowledge, end-to-end document-level IE, covering the four NER,
CR, EL, and RE tasks, has not been explored. We believe the major factor that hindered such a
study is the lack of high-quality training and test datasets. This is the main motivation of our first
contribution, Linked-DocRED: creating the first document-level, large-scale, human-quality
dataset and implementing and evaluating an end-to-end IE pipeline.
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II.5 Open-World Information Extraction (OpenIE)

Conventional IE models make a closed-world hypothesis: entity and relation types must be
specified beforehand. It is logical for supervised approaches, as they need annotated data for
each class, but even the very low resource zero-shot models need to know the type schema.
This property is problematic for KG construction. Indeed, as evoked in the introduction, it is
relatively easy to define a reasonable entity and relation type schema for a KG. However, it will
not be exhaustive, meaning some documents may contain knowledge that the user is unaware
of and have not been structured in its proposed scheme. With conventional closed-world IE
models, such knowledge will not be extracted. This is the primary motivation for open-world
IE. In this setting, the scheme is not predefined by the user but identified by the model. The
general objective is to build a “universal” IE model that extracts all possible knowledge and
proposes a reasonable typing scheme to structure it in a KG. Two families of models represent
OpenIE: triplet-based and clustering-based approaches.

Triplet-based OpenIE Triplet-based methods aim to extract (head, predicate, tail) triplets
from the document. Banko et al. [54] were the first to define the term OpenIE (although
prior works by Etzioni et al. [53] and Shinyama et al. [84] were already open-world). Early
OpenIE was based on grammatical features. KnowItAll [53] implements predefined, generic,
grammatical rules for open-world IE, and TextRunner [54] proposes a self-learning framework
where the model automatically finds new rules to extract more knowledge. These methods
were refined with more deep grammatical features: dependency tree [85], verb constraints
[86], phrase splitting [87], conjunctive sentence simplification [88]. Finally, SenseOIE [189]
proposes to combine previous OpenIE in an ensemble method.

DocOIE [187] and IMoJIE [128] introduce generative OpenIE. While grammatical OpenIE
extracts span from documents to create triplets, they propose to generate the triplet in an
auto-regressive fashion. Their work is a generalization of Cui et al. [56] to unknown entity and
relation types. IMoJIE is trained on silver annotations generated with the previous state-of-the-
art OpenIE models (this idea has been reused since by Kolluru et al. [190] and Nagumothu et al.
[191]). More recently, LLMs have been applied to generative OpenIE. Compared to generative
closed-world IE, they are triplet oriented and do not require specifying types [47, 144]. Ling
et al. [144] introduce an error correction mechanism with a dual extract then refine process.
PIVOINE [47] proposes using large-scale, automatically annotated data to pre-train an LLM
specifically for open-world IE tasks.

Generative OpenIE is powerful and conceptually elegant but costly to run. Indeed, triplets
are sequentially generated one after another. Therefore, Stanovsky et al. [55] and Kolluru et al.
[190] propose using word embeddings and sequence tagging to identify triplets. Their method
(OpenIE6) is much quicker than IMoJIE [128] while maintaining a similar level of performance.
OpenIE6 is enhanced by PIE-QG [191], thanks to sentence simplification. They paraphrase
the input sentences using PEGASUS [192] and replace pronouns with their coreferent names.
To further fasten the extraction process, MacroIE [193] adopts a coarse-to-fine approach with
a primary module that quickly prunes most of the head and tail candidates and a secondary
module that refines the remaining candidates to output the predictions. To do that, they represent
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potential candidates in a graph and find triplets of tightly linked nodes (maximal cliques
identification). Ro et al. [194] separates entity and predicate identification and learns them in a
multi-task and multilingual setting. Finally, Dong et al. [195] (SMiLe-OIE) propose considering
syntactic features and fusing them with BERT embeddings thanks to multi-view learning.

The main weakness of triplet-based OpenIE is the lack of predicate disambiguation. Indeed,
as they rely on surface forms for the predicates, they likely produce duplicated predicates for
the same underlying relation (e.g., “born in” and “birthplace of”13) that cannot be reconciled
using grammatical rules.

Clustering-based OpenIE To solve the triplet-based OpenIE shortcoming, clustering OpenIE
was proposed. Instead of relying on surface forms, clustering models generate clusters of close
relations (or entities) that are expected to have the same type. This category of models is studied
in more detail in section IV.2. We recall only the main elements in this paragraph. The methods
usually follow a dual-stage architecture with:

1. Entity/Relation type embedding. The objective is to compute, for each candidate, a vector
representative of the entity or relation type.

2. Type clustering. It aims to group candidates that share the same relation or entity type.

Language models are at the core of these approaches, providing expressive and precise
relation or entity-type embeddings for each candidate. The whole clustering or grouping part is
useless if this embedding is incorrect. Wu et al. [196] propose to refine relation embeddings
generated with EncLM (the concatenation of the embeddings of the head and tail entities)
thanks to contrastive learning on supervised data. To not rely on supervised data, SelfORE
[197] implements an iterative self-supervision approach: it generates pseudo-labels (from
clustering) that improve EncLM representations, which generates new embeddings that are then
clustered to produce new pseudo-labels. RoCORE [198] extends SelfORE when labeled data is
available (using semi-supervised learning). Duan et al. [199] observe that replacing SelfORE
hard clustering with soft-clustering to generate soft pseudo-labels benefits the performances.
Web-Selfore [200] proposes to gather information about the head and tail entities from the web
(KG or Wikipedia) to enhance the relation embedding. Wang et al. [201] implement EncLM
prompting to generate the relation embeddings14 instead of the entity pair representations (e.g.,
[196, 197]), with a procedure similar to RoCORE and obtain state-of-the-art results. Recently,
ASCORE [202] generalizes the active learning process for OpenIE. The user is asked to annotate
selected samples manually, chosen to be in areas of maximum density and to cover the whole
latent space.

These clustering-based OpenIE methods are more applicable in real-world use cases than
triplet-based ones because they can group predicates with very different grammatical expressions.
They are at the origin of two of our contributions, PromptORE for RE (chapter IV) and CITRUN
for NER (chapter V).
13This case is even more complicated than a simple surface form difference, the entities are inverted: (Bill Gates,

born in, Sealtle) or (Seattle, birthplace of, Bill Gates).
14With PromptORE, we discovered a similar prompting encoding approach. The works were done concurrently:

PromptORE was published in CIKM’22, and MatchPrompt at EMNLP’22 two months later.
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II.6 Conclusion
To conclude, information extraction is a central NLP task that aims to extract meaningful
knowledge (composed of entities and relations linking these entities) from unstructured
documents to build a knowledge graph. This knowledge graph is more accessible for downstream
applications to use than initial documents that are ambiguous. IE is composed of four conceptual
subtasks: named entity recognition, coreference resolution, entity linking, and relation extraction.
A synthetic literature review shows that this topic is in the midst of a revolution thanks to
language models (encoder-based and generative), and promising results are obtained, particularly
in low-resource settings that were once very difficult. However, multiple challenges remain:

• End-to-end IE. The end-to-end task of IE has not been studied much. From the 120
papers included in this literature review, only 8 consider full IE. Experimental results
show that performances are far from being usable in practice.

• Document-level IE. Most methods focus on sentence-level IE. Documents present unique
challenges, such as long context, distant relations, and multi-hop reasoning, that are
difficult to tackle in practice.

• Open-world IE. Most models restrict themselves to closed-world IE, where entity and
relation types are known beforehand. Type discovery and auto-structuration also come
with challenges and impacts on performances.

In the following chapters, we have tried to bring new contributions to these under-explored
areas of IE.
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III Linked-DocRED
Enhancing DocRED with Entity Linking to Evaluate End-To-End

Document-Level Information Extraction

Training and evaluating information extraction models requires a dataset annotated with
entities, coreferences, relations, and entity linking. However, existing datasets either lack entity
linking labels, are too small, are not diverse enough, or are automatically annotated (without a
strong guarantee of the correction of annotations).

In this chapter, we propose Linked-DocRED, the first manually annotated, large-scale,
document-level IE dataset, to the best of our knowledge. We enhance the existing and
widely-used DocRED dataset with entity linking labels that are generated thanks to a semi-
automatic process that guarantees high-quality annotations. In particular, we use hyperlinks in
Wikipedia articles to provide human-quality disambiguation candidates. We also propose a
complete framework of metrics to benchmark end-to-end IE models by extending the work of
Zaporojets et al. [21]. In particular, we define an entity-centric metric to evaluate entity linking
and generalize the supervised metrics to work under open-world and unsupervised settings.
Evaluating a supervised baseline shows promising results while highlighting the numerous
challenges towards end-to-end information extraction.

Linked-DocRED, the source code for the entity linking, the baseline, and the metrics are
distributed under an open-source license and can be downloaded from a public repository1.

Most of the work described in this chapter, including text, figures, and tables, was presented
at SIGIR’23 [32].

Contents
III.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
III.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
III.3 Dataset Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

III.3.1 Wikipedia Abstract Identification . . . . . . . . . . . . . . . . . . . 32
III.3.2 Wikilinks Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 35
III.3.3 Links in Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
III.3.4 Common Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 39
III.3.5 Manual Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1Available at https://github.com/alteca/Linked-DocRED.
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III.1 Introduction

Information Extraction (IE) aims to extract meaningful information from documents, that is,
entities and relations between these entities, to build or complement a Knowledge Graph (KG).
IE is a four-step process with 1. Named Entity Recognition (NER), 2. Coreference Resolution
(CR), 3. Entity Linking (EL), and 4. Relation Extraction (RE).

Several datasets have been proposed to train and evaluate IE models. The most recent
ones [1, 21, 203] focus on document-level information extraction, a more realistic, albeit
more challenging scenario than sentence-level IE. Indeed, it raises new problems, such as the
combinatorial explosion of relation extraction2 or the difficulty of considering long documents’
context. At the same time, documents offer opportunities; in particular, the longer and richer
context can help extract more refined and precise information with less ambiguity.

However, quantitative and qualitative analyses show that none of the existing datasets is
satisfactory for the end-to-end evaluation of IE models, covering the four NER, CR, RE, and
EL steps. On the one hand, most datasets focus on the first three tasks, ignoring the last entity
linking step [1, 204]. And yet entity linking is one of the most important steps, if not the
most important, as it transforms ambiguous extracted triples (containing natural language) into
structured and disambiguated nodes and relations. Without it, it is impracticable to build a
knowledge graph, as it will contain many duplicated nodes or wrongfully merged ones. The
question of ambiguity in natural language is indeed predominant: a surface form can refer to
multiple entities (e.g., Georgia the Eastern Europe country, or Georgia in the U.S.), and an
entity can be expressed with multiple surface forms (e.g., Anakin Skywalker and Darth Vader).
Ignoring entity linking hides an important part of the complexity of extracting information.

2The number of relation candidates increases quadratically depending on the number of entities (as
(𝑛
2
)
=

𝑛(𝑛−1)
2 ∈

O(𝑛2)).
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On the other hand, datasets that provide entity linking annotations are either too small, not
diverse enough, or automatically annotated [21, 203, 205, 206]. The shortfalls of these datasets
are linked to the fact that high-quality entity linking annotations are generally expensive and
time-consuming to produce due to the vastness of the search space. For instance, Wikidata3, a
reference knowledge base, contains more than 100 M entities.

Therefore, we propose Linked-DocRED, to the best of our knowledge, the first large-scale,
manually labeled, document-level IE dataset that provides high-quality annotations for entities,
coreferences, relations, and entity linking. Linked-DocRED aims to correct existing datasets’
shortcomings and define a reproducible and more complete benchmark for the training and
evaluation of end-to-end IE models. Instead of creating a dataset from scratch, we start from the
widely-used DocRED dataset of Yao et al. [1]. DocRED is a general-domain dataset composed
of 5,053 Wikipedia abstracts annotated with entities, coreferences, and relations. We enhance
DocRED by labeling each entity with entity linking. Since DocRED documents are taken from
Wikipedia articles, we propose to use wikilinks (internal Wikipedia hyperlinks) to generate
entity linking annotations. It allows us to create a semi-automatic entity linking process that
guarantees a human-quality annotation while being much faster and less expensive to implement.
A thorough evaluation of the entity linking process shows the quality of our labeling. Our
method can be replicated to other datasets based on Wikipedia articles, regardless of their
language (e.g., HacRED [204]).

We also continue the work of Zaporojets et al. [21] by establishing a clear and coherent set
of entity-centric metrics to evaluate the performance of an IE model. In particular, we define
an entity-centric metric to assess entity linking and generalize existing metrics to work in an
open-world and unsupervised setting. The evaluation of a baseline method based on recent
approaches shows encouraging results. However, it demonstrates that this task is still a difficult
challenge, particularly because of cascading errors during the successive steps of an IE pipeline.
We hope that Linked-DocRED can facilitate the discovery of more performant IE models. To
summarize our main contributions:

• We propose Linked-DocRED, the first large-scale, manually-labeled, document-level
IE dataset built semi-automatically on top of the DocRED dataset. Linked-DocRED
contains four times more entities and two times more relations than its closest competitor,
DWIE [21] (section III.4).

• We propose a new entity linking method based on the alignment between DocRED
documents and Wikipedia articles, providing high-quality labeling. This method can be
applied to disambiguate other Wikipedia-based datasets (section III.3).

• We define a novel entity-centric metric to assess entity linking and generalize Zaporojets
et al. [21] metrics to the open-world and unsupervised settings. Doing so provides a
complete set of metrics to evaluate an IE model (section III.5).

• We adapt state-of-the-art approaches to provide a simple and reproducible baseline
covering the four steps of IE, namely NER, CR, RE, and EL. The experimental results

3Available at https://www.wikidata.org.
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are promising, with a large margin of progress, particularly for entity linking, which is
subject to cascading errors at the end of the pipeline (section III.6).

III.2 Related Work
As reviewed in chapter II, recent papers often consider the NER, CR, and RE tasks of information
extraction [22, 176, 177, 180, 207, 208], setting entity linking aside. Only a handful of papers
[20, 44, 45] are exploring the end-to-end IE process. However, entity linking is critical, as it
constitutes the bridge between extracted triples, which are ambiguous, and structured knowledge
that downstream applications can use.

To train and evaluate IE models, numerous datasets have been proposed, covering a large
spectrum of settings and applications:

• Some focus on general domain information (e.g., T-REx [205], DocRED [1], or HacRED
[204]), others on very specific domains (scientific literature for SciERC [207], biomedicine
for FewRel 2.0 [206], or BC5CDR [209]).

• Some are manually annotated (e.g., DocRED [1], FewRel [210] or HacRED [204]), others
automatically generated such as T-REx [205] or NYT-10 [157].

• Some focus on sentences (e.g., FewRel [206, 210], or NYT-10 [157]) others on documents
(DocRED [1], KnowledgeNet [203], or DWIE [21]).

We recall some characteristics of the major information extraction datasets in table III.1.

FewRel [206, 210] FewRel is large-scale, diverse (80 relation types), and annotated for the
four tasks but does not contain documents. This lack of documents also explains the low number
of coreferences compared to other datasets. Besides, FewRel does not contain new knowledge
(all entities are already present in the knowledge base), simplifying the entity linking, as there
are no unknown entities. It is thus not usable in practice for our scenario.

T-REx [205] It is the largest of the seven datasets, with around 4.6 M documents. It is not
usable in our scenario, though, as the dataset was automatically labeled using IE models, which
means there is no strong guarantee of the quality of annotations. Similarly to FewRel, it does
not contain new knowledge (all entities are linked to Wikidata items). Nevertheless, it provides
a huge source of distant-supervision, which can be beneficial during training (even though it is
a lower-quality annotation).

KnowledgeNet [203] and BC5CDR [209] They contain documents and are annotated for
the four tasks. Similarly to FewRel and T-REx, BC5CDR has no new knowledge (all entities
are already in the knowledge base). This default is absent of KnowledgeNet, where 18 % of
its entities do not exist in the KG. However, BC5CDR and KnowledgeNet are too small (see
table III.1) and not diverse enough (with only 15 relations types for KnowledgeNet and 1 for
BC5CDR), which raises questions regarding their representativeness for realistic IE scenarios.
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Table III.1: Quantitative comparison between Linked-DocRED and widely-used IE datasets.
Please refer to the legend below for additional details on the columns.

Dataset
Size Entities

# Coreferences
# Docs # Tokens # Entities # Types

FewRel [206, 210] - 1,397 k 112 k - 2 k
T-REx [205] 4,650 k 446,053 k 69,962 k - 17,617 k
KnowledgeNet [203] 4 k 734 k 11 k - 7 k
BC5CDR [209] 1.5 k 343 k 10 k 2 19 k
DWIE [21] 0.8 k 501 k 23 k 311 20 k
HacRED [204] 9.2 k 1,141 k 99 k 9 19 k
DocRED [1] 5.1 k 1,001 k 99 k 6 34 k

Linked-DocRED 5.1 k 1,001 k 95 k 6 38 k

Dataset
Entity Linking Relations

# Linked # New # Instances # Types

FewRel [206, 210] 112 k (100 %) 0 ( 0 %) 56 k 80
T-REx [205] 69,962 k (100 %) 0 ( 0 %) 208,774 k 642
KnowledgeNet [203] 9 k ( 82 %) 1.9 k (18 %) 13 k 15
BC5CDR [209] 10 k (100 %) 0 ( 0 %) 48 k 1
DWIE [21] 13 k ( 57 %) 10 k (43 %) 22 k 65
HacRED [204] - - 68 k 26
DocRED [1] - - 50 k 96

Linked-DocRED 63 k ( 67 %) 6.4 k ( 7 %) 50 k 96

To understand the tables’ columns:

• Size > # Docs. Number of documents.

• Size > # Tokens. Number of words and punctuations.

• Entities > # Entities. Number of entities ignoring coreferences.

• Entities > # Types. Number of entity types.

• # Coreferences. Number of coreference clusters.

• Entity Linking > # Linked. Number (secondary column percentage) of entities linked to a knowledge
graph.

• Entity Linking > # New. Number (secondary column percentage) of entities that do not exist in the
knowledge graph.

• Relations > # Instances. Number of relations.

• Relations > # Types. Number of relation types.
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DWIE [21] Like KnowledgeNet and BC5CDR, DWIE contains documents labeled for the
four tasks. It is more diverse and bigger, though, but still much smaller in terms of documents,
entities, and relations than HacRED and DocRED. The analysis of the dataset’s files suggests
that entity linking was automatically labeled as each entity is associated with multiple candidates
with eighteen-digit precision probabilities. As a result, it is not satisfactory for our purpose.

DocRED [1] and HacRED [204] They contain around two to five times more documents
and annotations than the other manually annotated datasets, which makes them more suitable
for training and evaluating IE models. Unfortunately, they are not annotated with entity linking.

Although several datasets have been proposed to evaluate IE models, none is satisfactory.
Indeed, FewRel [206, 210] lacks documents and novel entities; T-REx [205] lacks manual
annotations and novel entities; KnowledgeNet [203] and BC5CDR [209] are too small and not
diverse enough; DWIE has automatic entity linking annotations [21]; and HacRED [204], and
DocRED [1] lack annotations for entity linking. As a result, it motivates us to create a new
dataset that would provide a complete and objective baseline to test and develop end-to-end IE
models.

III.3 Dataset Generation
In this section, we describe the process we used to create Linked-DocRED. First, creating an IE
dataset from scratch is an expensive endeavor as it requires annotating documents for entities,
coreferences, relations, and entity linking. In particular, entity linking is very time-consuming
due to the vastness of the search space (millions of candidates) and the ambiguity of natural
language: an entity can have different surface forms, and the same surface form can refer to
multiple entities (cf. Georgia presented in the introduction). At the same time, we notice that
one existing dataset, DocRED [1], is almost adequate to train and evaluate an IE model, except
for the lack of entity linking annotations. DocRED is also widely used and acknowledged for
its quality as a benchmark, especially for document-level IE. Therefore, instead of creating a
new dataset from the ground up, we propose to enhance DocRED with entity linking.

To create entity linking annotations, we do not want to rely on any automatic entity linker
(for instance, DBpedia Spotlight [211]), as some competitor datasets (DWIE or T-REx) have
implemented. Indeed, entity linkers would introduce biases. They are imperfect (in fact, even
human annotation is imperfect), have advantages and drawbacks, and may wrongly link some
entities. So, if an IE model uses the same entity linker for its predictions, it will reproduce the
same behavior and obtain overstated results. The only valid choice for us is to rely on manual
annotations to limit the introduction of bias in Linked-DocRED and ensure a fair comparison
between different entity linking methods.

Our entity linking aims to link every entity of DocRED to a resource in Wikipedia (and we
also provide the Wikidata ID associated with the Wikipedia resource). For the entities that do
not exist in Wikipedia, we will assign them a unique identifier of the form #DocRED-<id>#

(e.g., Ben Skywalker4 in figure III.8). Providing two entity linking identifiers is beneficial:
4This entity is not in Wikipedia at the time we write this thesis.
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Luke Skywalker is a fictional character and the main protagonist of the original
film trilogy of the Star Wars franchise created by George Lucas. The character,
portrayed by Mark Hamill, is an important figure in the Rebel Alliance’s struggle
against the Galactic Empire. He is the twin brother of Rebellion leader Princess
Leia Organa of Alderaan, a friend and brother-in-law of smuggler Han Solo, an
apprentice to Jedi Masters Obi-Wan "Ben" Kenobi and Yoda, the son of fallen Jedi
Anakin Skywalker (Darth Vader) and Queen of Naboo/Republic Senator Padmé
Amidala and maternal uncle of Kylo Ren/Ben Solo. The now non-canon and
discarded Star Wars Legends depicts him as a powerful Jedi Master, husband of
Mara Jade, the father of Ben Skywalker and maternal uncle of Jaina, Jacen and
Anakin Solo.

In 2015, the character was selected by Empire magazine as the 50th greatest movie
character of all time.[2] On their list of the 100 Greatest Fictional Characters,
Fandomania.com ranked the character at number 14.[3]

Figure III.1: Wikipedia abstract of Luke Skywalker with its wikilinks (in blue), as it was
available on July 28, 20185. It corresponds to instance 2,774 of DocRED/Linked-DocRED in
figure III.8.

Wikipedia gives access to verbose and descriptive texts about the entity, and Wikidata to the
interconnected structure of a knowledge graph.

A document in DocRED is a Wikipedia abstract, the first paragraphs of a Wikipedia article.
If we take the instance presented in figure III.8, the document corresponds to the Wikipedia
abstract of Luke Skywalker (displayed in figure III.1). The wikilinks in the Wikipedia abstract
are interesting: they surround a term for which they indicate the URL of the Wikipedia article
defining it. It is a form of entity linking between entities in the abstract and Wikipedia resources,
as there is only one Wikipedia article (one URL) defining a specific concept. To be more
precise, as Wikipedia contributors manually edit these wikilinks, this can be considered as a
form of manual entity linking. In brief, it is an ideal source of high-quality entity linking for
DocRED.

Besides, we note that there is a direct mapping (same sentence, same position) between a
lot of DocRED entities in the document and wikilinks in the corresponding Wikipedia article
(e.g., “Star Wars”, “George Lucas”, “Mark Hamill”, “Padmé Amidala”, or “Galactic Empire”
in figures III.1 and III.8). Using these wikilinks with this very strict mapping is the basic idea
we developed for our semi-automatic, high-quality entity linking.

The general process we used to annotate DocRED with entity linking is presented in
figure III.2. The main step is mapping entities with wikilinks, the second module of figure III.2
(Wikilinks Alignment, presented in section III.3.2). It is insufficient to fully disambiguate our
dataset, which explains the three steps following it. In the next sections, we will describe each

5Taken from https://en.wikipedia.org/w/index.php?title=Luke_Skywalker&oldid=876119706 (visited on 2024-
07-08).
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Figure III.2: Architecture of the semi-automatic entity linking process implemented to disam-
biguate Linked-DocRED.

constituent in the disambiguation process for a DocRED document.

NUM and TIME Entities

Within DocRED, 25,171 entities (26.6 %) are numerals (NUM) or temporal (TIME) entities.
In a knowledge graph such as Wikidata or DBpedia6, these entities are not considered resources
(associated with a unique URI) but literals, which are not disambiguated. Although the
disambiguation of dates and numbers could be interesting, we apply the same rule for Linked-
DocRED and create a particular identifier #ignored# to indicate no disambiguation for NUM
and TIME entities.

III.3.1 Wikipedia Abstract Identification

To access the wikilinks and map them to our entities, we first need to get the Wikipedia article
associated with our DocRED document (the first step in figure III.2). Although DocRED does
not contain the URL of the source Wikipedia page, we can access the article title and the
abstract. The solution we implemented is a full-text search on the title and abstract to find the
most similar Wikipedia article.

Another aspect to consider is that DocRED was published in 2019, meaning that many
Wikipedia pages have been modified since, which can lead to poor results with full-text searches.

6Available at https://www.dbpedia.org.
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To mitigate this issue, we downloaded the 2020-01 DBpedia abstracts dump7, which is the
oldest available this day. We have also tested with Wikipedia dumps but found them of lower
quality than DBpedia: some abstracts were truncated, and others contained abnormal characters.
From the DBpedia dump, 5.6 M Wikipedia abstracts were indexed in ElasticSearch8. As a side
note, the dump does not contain all Wikipedia articles: when we write the thesis, there are
around 6.8 M Wikipedia articles.

For a given DocRED document, we then perform a full-text search comparing the instance
text to the abstracts in ElasticSearch to identify the Wikipedia abstract most similar to our
document. Internally, ElasticSearch uses inverted full-text indices provided by Apache Lucene9

and the BM25 metric [212] to perform its search (weighted bag-of-words). This setup is
efficient and fast in returning good Wikipedia candidates, but it does not consider word order in
the Wikipedia article. In practice, the word order is critical to determine the correct Wikipedia
abstract. To have the best confidence possible, we propose to rank the candidates using a
similarity metric based on the Levenshtein distance [213]. The Levenshtein distance measures
the number of character modifications (insertion, deletion, modification) to transform the first
string into the second. It is defined recursively10 as follows:

lev(𝒅1, 𝒅2) =



|𝒅1 | if |𝒅2 | = 0,
|𝒅2 | if |𝒅1 | = 0,
lev(tail( |𝒅1 |), tail( |𝒅2 |)) if head( |𝒅1 |) = head( |𝒅2 |),

1 +min


lev(tail( |𝒅1 |), 𝒅2)
lev( |𝒅1 |, tail(𝒅2))
lev(tail( |𝒅1 |), tail( |𝒅2 |))

otherwise,

(III.1)

with 𝒅1 and 𝒅2 the two documents to be compared, |𝒅1 | the length (number of characters) of
𝒅1, head(𝒅1) = 𝒅1 [0] the first character of 𝒅1, and head(𝒅1) = 𝒅1 [1:] the second and following
characters of 𝒅1. We derive a Levenshtein-based similarity metric defined between [0, 1] as:

levsim(𝒅1, 𝒅2) = 1 − lev(𝒅1, 𝒅2)
max( |𝒅1 |, |𝒅2 |)

. (III.2)

This similarity metric ranks precisely the candidates: logically, the DocRED document and
the correct Wikipedia candidate are the closest regarding Levenshtein distance. However, it
cannot determine whether the first Wikipedia candidate is the right article. Indeed, as we have
said previously, our DBpedia dump is incomplete: it does not contain every Wikipedia abstract,
which means that some DocRED documents cannot be found. We propose determining a
threshold with levsim to filter those instances.

7Available at https://databus.dbpedia.org/dbpedia/text/long-abstracts.
8Available at https://www.elastic.co/elasticsearch.
9Available at https://lucene.apache.org.

10We provide the recursive formulation due to its clarity. In practice, dynamic programming iterative algorithms
are preferred as they have a lower quadratic complexity. In particular, the Needleman-Wunsch algorithm [132]
defined in figure III.4 can be used to compute the Levenshtein distance.
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Figure III.3: Evolution of the correct Wikipedia identification ratio depending on levsim between
the DocRED instance and the candidate Wikipedia abstract. The Wikipedia identification ratio
is computed based on the manual annotation of 1,000 pairs of DocRED instance and Wikipedia
abstract stratified in 20 bins of size 0.05 levsim. We show the Wilson confidence interval with
𝛼 = 0.05. No confidence interval is displayed if the bin contains less than 50 pairs.

To do that, we select a sample of 1,000 DocRED documents with their first Wikipedia
candidate, stratified with levsim (20 bins of size 0.05, containing 50 instances each), and we
manually determine whether the Wikipedia candidate is correct or not. The results are shown
in figure III.3. For each bin, we also compute the confidence interval for the proportion with a
standard significance level 𝛼 = 0.05, using the Wilson approximation [214]. Indeed, we have
few instances per bin coupled with ratios close to 0 and 1; therefore, the central limit theorem
approximation does not hold, and the usual Wald confidence interval becomes unreliable. On
the contrary, the Wilson score interval can be used with small samples and extreme proportions.
It is defined as follows:

CIW𝛼 =

[
1

1 + 𝑧2𝛼
𝑛

(
𝑝 +

𝑧2𝛼
2𝑛
± 𝑧𝛼

2𝑛

√︃
4𝑛𝑝(1 − 𝑝 + 𝑧2𝛼

)]
, (III.3)

with 𝑛 the size of the sample, 𝑝 the observed proportion, and 𝑧𝛼 the 1 − 𝛼
2 quantile of a

standard normal distribution11. In practice, some bins contain less than 50 elements (e.g.,
]0.15, 0.20], ]0.35, 0.40], or ]0.40, 0.45]), in which case we annotate all instances, so there is
no confidence interval.

We notice that for levsim > 0.5, the proportion of correctly identified Wikipedia articles is
close to 1 (above 0.95). Therefore, we propose to set our threshold at levsim > 0.5 and manually
check DocRED documents with levsim ≤ 0.5. Using this threshold, we automatically identify
the Wikipedia article for 4,694 documents (93 %). We manually determine the Wikipedia
abstract for the remaining 357 documents. We could not find the Wikipedia article for 23
instances; we think these articles have been completely removed from Wikipedia. These
DocRED instances will be manually disambiguated.

11With 𝛼 = 0.05, we have 𝑧𝛼 ≈ 1.96.
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Finally, once the correct Wikipedia abstract is identified, we download the HTML code of
the corresponding Wikipedia article. We select the page revision ID to be before 2018-12-31 to
minimize the differences between the Wikipedia page and the DocRED instance. As a side
note, the target date was arbitrarily fixed at 2018-12-31, as we could not precisely determine the
timestamp of the extraction made by Yao et al. In hindsight, we found that their extraction was
anterior to December 2018 and probably close to summer 2018. In practice, this six-month
offset did not impact the results12.

III.3.2 Wikilinks Alignment

In this module (second step in figure III.2), we implement the mapping between the DocRED
document’s entities and wikilinks in the Wikipedia article we downloaded in the previous
section. We want to find direct intersections (same sentence and position) between entities in
our DocRED instance and wikilinks in the Wikipedia article to maximize the confidence in
the annotations. To do that, we need to align our DocRED text precisely with the Wikipedia
abstract. The problem is that there are minor differences between the two texts, which make
this step nontrivial. These small discrepancies come from the preprocessing applied by Yao
et al. on DocRED instances that remove Cyrillic, Arabic, and Asiatic characters and some parts
of the abstract, and by the small revision modifications on Wikipedia articles (as we have not
been able to perfectly identify the date when Yao et al. retrieved the articles).

To overcome this difficulty, we propose to use the Needleman-Wunsch algorithm [132], which
was initially proposed to optimally align two nearly-identical DNA sequences, minimizing
insertions, deletions, and substitutions of nucleotides. This algorithm is easily generalizable to
string alignment by replacing the notion of nucleotides with characters. It is equivalent to the
Levenshtein distance, with the complement that it not only returns the editing distance but also
the list of modifications to transform one string in the other. It produces a translation table to
convert a character position in the DocRED instance to a position in the Wikipedia article.

The Needleman-Wunsch algorithm relies on dynamic programming principles: it solves
small alignment problems that incrementally lead to the optimal global solution. The algorithm
is presented in figure III.4. A 2-D array (𝑭) is used to store the optimal alignment solutions of
substrings of the DocRED instance 𝒅𝐷 (first dimension) and the Wikipedia article 𝒅𝑊 (second
dimension). The substrings start at position 0 and end at position 𝑖 for DocRED and 𝑗 for
Wikipedia. Another 2-D array (𝑨) with a similar shape as 𝑭 is used to store the operations
(insertion, deletion, substitution) selected by the optimal alignment. Insertions, deletions, and
substitutions are associated with penalties: 𝑠𝐼𝑁𝑆 = 1 for insertions and deletions13, and 𝑠𝑆𝑈𝐵 = 1
for substitutions. The algorithm is composed of three steps.

Initialization 𝑭 represents the editing distance of the candidate alignment (error). Solutions
with low distances are better than those with high distances. Insertions, deletions, and

12It likely increased the amount of manual annotation required.
13Insertion and deletions are the same operations but with a different point of view (deletion from the point of

view of 𝒅𝐷 is equivalent to insertion from the point of view of 𝒅𝑊 ).

35

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0111/these.pdf © [P-Y. Genest], [2024], INSA Lyon, tous droits réservés



III Linked-DocRED

function Needleman-Wunsch(𝒅𝐷 , 𝒅𝑊 )
begin

Data: 𝒅𝐷 text of the DocRED document, 𝒅𝑊 text of the Wikipedia article
Result: 𝑴 the list of modifications to transform 𝒅𝐷 into 𝒅𝑊
𝑠𝐼𝑁𝑆, 𝑠𝑆𝑈𝐵, 𝑠𝑀𝐴𝑇𝐶𝐻 ← 1, 1, 0
𝑭, 𝑨← Array(|𝒅𝐷 | + 1, |𝒅𝑊 | + 1), Array(|𝒅𝐷 | + 1, |𝒅𝑊 | + 1)
/* Initialization */

𝑭[0, 0] ← 0
for 𝑖 ← 1 to |𝒅𝐷 | + 1 do

𝑭[𝑖, 0] ← 𝑭[𝑖 − 1, 0] + 𝑠𝐼𝑁𝑆
𝑨[𝑖, 0] ← “DEL”

end
for 𝑗 ← 1 to |𝒅𝑊 | + 1 do

𝑭[0, 𝑗] ← 𝑭[0, 𝑗 − 1] + 𝑠𝐼𝑁𝑆
𝑨[0, 𝑗] ← “INS”

end
/* Optimal Alignment */

for 𝑖 ← 1 to |𝒅𝐷 | + 1, 𝑗 ← 1 to |𝒅𝑊 | + 1 do
𝑖𝑛𝑠← 𝑭[𝑖, 𝑗 − 1] + 𝑠𝐼𝑁𝑆
𝑑𝑒𝑙 ← 𝑭[𝑖 − 1, 𝑗] + 𝑠𝐼𝑁𝑆
𝑚𝑎𝑡𝑐ℎ← 𝑭[𝑖 − 1, 𝑗 − 1] + if 𝒅𝐷 [𝑖] = 𝒅𝑊 [ 𝑗] then 𝑠𝑀𝐴𝑇𝐶𝐻 else 𝑠𝑆𝑈𝐵

𝑭[𝑖, 𝑗] ← min(𝑖𝑛𝑠, 𝑑𝑒𝑙, 𝑚𝑎𝑡𝑐ℎ)
𝑨[𝑖, 𝑗] ← (“INS”, “DEL”, “MATCH/SUB”)[argmin(𝑖𝑛𝑠, 𝑑𝑒𝑙, 𝑚𝑎𝑡𝑐ℎ)]

end
/* Backtracking */

𝑴 ← []
while 𝑖 > 0 do

if 𝑨[𝑖, 𝑗] = “DEL” then
prepend “DEL” to 𝑴

𝑗 ← 𝑗 − 1
else if 𝑨[𝑖, 𝑗] = “INS” then

prepend “INS” to 𝑴

𝑖 ← 𝑖 − 1
else

prepend if 𝒅𝐷 [𝑖] = 𝒅𝑊 [ 𝑗] then “MATCH” else “SUB” to 𝑴

𝑖, 𝑗 ← 𝑖 − 1, 𝑗 − 1
end

end

Figure III.4: Pseudocode of the Needleman-Wunsch algorithm employed to align the text
of the DocRED instance with the Wikipedia article.
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substitutions come with a penalty compared to a match. Thus, the idea is to minimize the
penalties. We initialize 𝑭[0, 0] = 0 (aligning “” with “” requires no operation), 𝑭[𝑖, 0] = 𝑖 · 𝑠𝐼𝑁𝑆
(the only possibility to translate 𝒅𝐷 into “” is to do deletions), and 𝑭[0, 𝑗] = 𝑗 · 𝑠𝐼𝑁𝑆 (the only
possibility to translate “” into 𝒅𝑊 is to do insertions).

Optimal Alignment 𝑭 is then filled iteratively. At each step, three editing distances are
computed:

• Insertion. The distance if we do an insertion operation at this step.

• Deletion. The distance if we do a deletion operation at this step.

• Match/Substitution. The distance if we do a match or a substitution. If the two characters
are equal, we have a match; otherwise, we have a substitution.

These three distances can be easily calculated using the previously filled values14 in 𝑭 (insertion
uses 𝑭[𝑖, 𝑗 −1], deletion 𝑭[𝑖−1, 𝑗], and match/substitution 𝑭[𝑖−1, 𝑗 −1]). Then, the operation
that minimizes the editing distance is chosen and stored in 𝑨.

Backtracking Once 𝑭 is filled, the list of modifications between 𝒅𝐷 and 𝒅𝑊 are computed by
backtracking 𝑨.

With the translation table built using the Needleman-Wunsch algorithm, it is simple to
compute intersections between surface forms of entities as annotated in DocRED and wikilinks
and thus generate entity linking candidates.

However, we have no guarantee of the quality of the proposed candidates. Intuitively, if the
intersection is exact, the entity linking should be accurate. It becomes more difficult with a
partial intersection. For instance, “Columbia University in the City of New York” is the same
as “Columbia University”, but “Columbia” is not the same entity as “Columbia University”.
A simplistic measure is to keep only exact intersections, but we would discard many good
disambiguations.

Instead, we propose to evaluate the impact of the quality of the intersection on the disam-
biguation. To do this, we apply a method similar to that of section III.3.1. We first compute
levsim, defined equation (III.2), between the DocRED entity text and the matched wikilink,
which allows us to quantify the intersection quality. We then select a sample of 1,000 entities
and their matched wikilinks, stratified on levsim (with 20 bins of 0.05), and manually determine
whether the entity linking is correct. We also compute a Wilson confidence interval for each
bin for a proportion with 𝛼 = 0.05. The results are shown in figure III.5.

We can see three regimes:

• levsim < 0.35. Few entities are correctly disambiguated, which is logical given that the
entity and the wikilink are dissimilar.

14As a side note, it is possible because the algorithm only allows modifications that do not impact “future”
characters (such as permutations).
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Figure III.5: Evolution of the correct entity linking identification ratio depending on levsim
between the entity and the candidate wikilink. The correct entity linking identification ratio
was computed by manually annotating 1,000 pairs of entity and candidate wikilink stratified in
20 bins of size 0.05 levsim. We show the Wilson confidence interval with 𝛼 = 0.05.

• levsim ∈ [0.35, 0.75]. Entities and wikilinks are relatively similar, but the probability of
wrong entity linking is still high.

• levsim > 0.75. The proportion is close to 1 (0.984): of the 250 annotated pairs, only four
are wrongly linked.

Considering this figure III.5, we keep only entity linking candidates with the highest correct
entity linking identification ratio: levsim > 0.75. By doing so, we disambiguate 40,826 entities
of DocRED (43.3 %) as shown in figure III.7.

This module provides entity linking annotations with high confidence, as we are strict with
intersections and textual similarity and rely on manual annotations of Wikipedia contributors.

III.3.3 Links in Page

In a Wikipedia article, the first mention of an entity is associated with a wikilink, while the
following, most often, are not. As a result, the entity may be disambiguated in the Wikipedia
article but not in the specific span of text we are considering. A workaround is to check if a
wikilink on the Wikipedia page has the same surface form as the entity we are disambiguating
(the third step in figure III.2). We also have to check for ambiguity: if there are multiple
wikilinks with the same surface form but different target articles, we cannot choose the correct
one with this module. Using this module, we disambiguate 6,741 additional entities (7.1 %).

This approach is of lower quality compared to wikilinks alignment. However, we are strict
on selecting wikilinks: we allow only an exact match between the wikilink and the surface form
of the entity.
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III.3.4 Common Knowledge

When analyzing the remaining undisambiguated entities, we notice that some of them are very
common: famous persons (e.g., Bill Gates, Barack Obama), well-known companies (Facebook,
Apple, ...), or common-knowledge places (United States, Spain, Paris, New York, etc.). These
entities are so famous that they are not associated with wikilinks, as it is supposed that everyone
knows them already.

To add this notion of common knowledge (the fourth step in figure III.2), we select the
entities mentioned at least three times in the dataset and manually annotate them. We take
particular care in detecting entities with ambiguities. For instance, French can refer to France,
the French language, or the French people, and Georgia points to the eastern European country
or the U.S. state. The ambiguity about French can be solved by looking at the types: France is a
location (LOC), the French language is classified as miscellaneous (MISC), and French people
is identified as an organization (ORG). However, the only possibility for Georgia is to label
each instance manually (see next section). After this filtering step, we annotate around 1,000
entities, which leads to the disambiguation of 7,684 more entities (8.1 %).

We estimate the quality of the entity linking to be as good as links in page, as the two
processes are similar.

III.3.5 Manual Annotation

We manually annotate the remaining 14,125 entities to guarantee a high-quality entity linking.
Among these entities, we expect to be able to disambiguate the majority, but we also anticipate
encountering entities that are not present in Wikipedia. To facilitate the labeling process, we
designed an interface with Label Studio15 (displayed in figure III.6).

The annotation is done document by document. The annotators must label every remaining
entity (three per document on average). To help them, a list of five candidates per entity
is provided from which they can choose. These candidates are determined by searching on
Google16 using the surface form and filtering to keep only Wikipedia results17. They can also
manually enter a Wikipedia URL or a coreference with another entity in the document. Finally,
they can indicate that the entity does not have a Wikipedia page (new knowledge).

A single annotator labeled all the entities to ensure maximal coherence in the entity linking
scheme. During the manual annotation, he identified 523 errors in the dataset18: 361 entities
were wrongly typed, 148 mentions needed to be corrected (the boundaries were wrong), and 14
mentions were not entities. These errors have been corrected.

Inter-Annotator Agreement To better understand the quality of the manual annotation, we
selected a sample of 1,018 entities, and three annotators disambiguated them to check if the

15Available at https://labelstud.io.
16Available at https://www.google.com.
17We have also tried using the internal search engine of Wikipedia or Wikidata, but they achieve lower recall than

Google.
18This error identification step is not exhaustive.
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Figure III.6: GUI developed with Label Studio to manually disambiguate the remaining 14,125
entities in Linked-DocRED. On the upper left, the text of the instance is displayed (it corresponds
to instance 2,774 shown in figure III.1 and figure III.8). The entities to disambiguate are
highlighted, and the already linked ones have colored characters. Below is recalled each linked
entity with its Wikipedia resource. On the right, the entity to disambiguate is displayed, with
five candidates provided. The annotator can choose one, indicate a coreference in the text field,
enter a manual wikilink, or signify that the entity does not exist in Wikipedia.

entity linkings were similar. On this sample, we compute the Cohen’s kappa coefficient [215]
to qualify the inter-annotator agreement and obtain

𝜅𝐸𝐿 = 0.679.

This 𝜅𝐸𝐿 score shows a strong inter-annotator agreement, especially considering the diversity
of Wikipedia resources (more than 6.8 M articles in Wikipedia). Looking more precisely at
the disagreements, we notice that for 30 % of them, one annotator indicated that the entity
does not exist in Wikipedia, while the other was able to find it. It shows the difficulty of being
exhaustive in the search for a Wikipedia resource. If we correct these disagreements, we obtain
a 𝜅𝐸𝐿 = 0.816, indicating a strong agreement between annotators.

Overall, this inter-annotator agreement analysis exhibits high-quality annotations. The main
weakness is the complexity of determining with certainty that an entity does not exist in
Wikipedia. As a result, in the final dataset, we distinguish a manual annotation leading to
a Wikipedia resource from a manual annotation leading to “does not exist.” If the entity is
considered new, we provide a unique entity linking identifier of the form #DocRED-<id>#. As
the confidence is lower in this case, we provide the list of candidates that the annotators refused,
as they are candidates that an entity linker can easily predict. We are sure that these candidates
are wrong.

This five-step process allows us to label all entities in Linked-DocRED. The participation
of all methods in the disambiguation can be seen in figure III.7. To find the Wikidata ID
for each disambiguated entity, we use the metadata of the Wikipedia resource (the property
wikibase_item).
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Figure III.7: Modules used to disambiguate the 94,547 entities of Linked-DocRED (see
section III.3 for the details).

III.4 Dataset

As we have said earlier, Linked-DocRED comprises Wikipedia abstracts annotated with entities,
coreferences, relations, and entity linking. The main statistics of the dataset are shown in the
last line of table III.1.

The instance 2,774 of the train split is shown in figure III.8. The entities in the document are
highlighted (pink for PER, orange for MISC, blue for ORG, green for LOC, grey for TIME,
and brown for NUM). Two examples of entities are displayed below the document, with their
mentions and the Wikipedia resource determined during entity linking. “Ben Skywalker” does
not exist in Wikipedia; therefore, it is associated with the unique id #DocRED-6032#. Two
examples of relations are also displayed. Finally, at the bottom, a small part of the knowledge
graph representing the knowledge contained in the document is shown. In particular, we
can see entities and relations that do not exist in Wikipedia or Wikidata (related to the node
#DocRED-6032#).

III.4.1 Entities, Coreferences, Relations

We are using the entities, coreferences, and relations labels of DocRED; therefore, we recall the
annotation process implemented by Yao et al. [1].

Entities & Coreferences Entities are automatically extracted and typed using spaCy19. To
generate coreferences candidates, the entities are linked to Wikidata, with two basic approaches:
1. exact match between the surface form and a Wikidata entity label, or 2. using the TagMe
entity linker [216]. As a side note, this primitive entity linking is not retained in their published
dataset because its objective is not to be precise but to generate coreference and relations
candidates. The entities and coreferences candidates are then corrected and complemented by
human annotators.
19Available at https://spacy.io.
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Luke Skywalker (train, 2774)

[0] Luke Skywalker is a fictional character and the main protagonist of the original film trilogy 

of the Star Wars franchise created by George Lucas. [1] The character, portrayed by Mark 

Hamill, is an important figure in the Rebel Alliance's struggle against the Galactic Empire. [2] 

He is the twin brother of Rebellion leader Princess Leia Organa of Alderaan, a friend and 

brother-in-law of smuggler Han Solo, an apprentice to Jedi Masters Obi-Wan "Ben" Kenobi and 

Yoda, the son of fallen Jedi Anakin Skywalker (Darth Vader) and Queen of Naboo / Republic 

Senator Padmé Amidala and maternal uncle of Ben Solo / Kylo Ren. [3] The now non-canon 

Star Wars Legends depicts him as a powerful Jedi Master, husband of Mara Jade, the father of 

Ben Skywalker and maternal uncle of Jaina, Jacen and Anakin Solo. [4] In 2015, the character 

was selected by Empire magazine as the 50th greatest movie character of all time. [5] On their 

list of the 100 Greatest Fictional Characters, Fandomania.com ranked the character at number 

14.
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Figure III.8: Example instance of Linked-DocRED. From top to bottom: text of a document
with highlighted entities; two examples of extracted entities with their Wikipedia and Wikidata
resources, Ben Skywalker has no corresponding resource in Wikipedia; two examples of
relations; and small part of the knowledge graph built from the entities and relations of the
document.
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Relations Using the basic entity linking, candidate relations are generated under the distant-
supervision setting. Distant-supervision implies that if two entities, linked by a relation 𝒓

in a knowledge graph, appear in the same document, then they express the relation 𝒓 in the
document. Other candidates are generated using RE models (not explained by Yao et al. [1]).
The candidates are validated and supplemented by the annotators. Besides, annotators also
indicate the sentences that support the existence of the relation in the document (evidence in
figure III.8).

As we can see in table III.1, our entity linking does not impact the annotation of relations of
DocRED, as the statistics of Linked-DocRED are identical to DocRED. However, it modifies
coreferences (and entities indirectly): we identify 4,013 new coreferences that were not detected
in DocRED. For example, in the instance 2,774 of the train split (see figure III.8), “Darth Vader”
and “Anakin Skywalker” were not identified as coreferences.

III.4.2 Entity Linking

The entity linking annotation process is described in section III.3. To sum up, we rely on
human annotations elicited by a semi-automatic process, as shown in figure III.2: 1–3. we map
entities with wikilinks to benefit from Wikipedia contributor’s annotations, 4. we use common
knowledge (that was manually annotated), and 5. we manually label the remaining entities. This
process leads to the disambiguation of every entity in Linked-DocRED. As we see in table III.1,
67 % of the entities are associated with a Wikipedia page and a Wikidata resource, and 7 % are
identified as new resources unknown in Wikipedia. The remaining 26 % entities are numerals
or temporal data not disambiguated, following Wikidata’s and DBpedia’s schemes.

For each entity in Linked-DocRED, we provide the following:

• wikipedia_resource: the identifier of the Wikipedia page, for instance Darth_Vader

for entity 12 in figure III.8.
If the entity is ignored (NUM or TIME), we have instead #ignored#.
If the entity is new (unknown in Wikipedia), a unique identifier is provided of the form
#DocRED-<id>#, for example, #DocRED-6032# for entity 18 in figure III.8.

• wikidata_resource: the identifier of the Wikidata entity, for instance Q12206942 for
entity 12 in figure III.8.

• wikipedia_not_resource: in the case of a new entity (unknown in Wikipedia), we
provide the list of candidates that the annotator refused. They can be used to check that
an entity linker is not predicting them.

• method: the method used to disambiguate this entity (see figure III.7).

• confidence: a confidence value from three choices: A, B, C.

Indeed, each entity linking in Linked-DocRED is associated with a confidence indicator. We
define three possible classes:
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Table III.2: Proportion of Linked-DocRED entities associated with each confidence indicator
and estimation of the correct entity linking probability on a sample of 1,000 entities. The
Wilson confidence interval with 𝛼 = 0.05 is printed in parenthesis. We do not estimate the
correct entity linking probability for the C indicator, as it is difficult to ensure that an entity
does not exist in Wikipedia due to the vastness of the search space.

Confidence Indicator A B C

Proportion in Linked-DocRED 78.0 % 15.2 % 6.8 %
Correct entity linking probability 0.979(9) 0.950(14) -

• A (very high confidence). The entity was linked using wikilinks alignment or manual
annotation, or it was ignored (NUM and TIME).

• B (high confidence). The entity was linked using links in page or common knowledge.

• C (medium confidence). The annotator indicated that the entity does not exist in
Wikipedia.

These indicators give a qualitative assessment of the quality of the disambiguation. To give a
quantitative estimation of the probability of correct entity linking, we selected a sample of 1,000
entities for indicator A and 1,000 entities for indicator B. A human annotator manually checked
these entities to determine whether the entity linking was correct. It allows us to estimate the
probability of correct entity linking. We also compute a Wilson confidence interval for the
proportion with 𝛼 = 0.05. We provide no estimation for indicator C as it is complicated to be
sure that an entity does not exist in Wikipedia. The results are shown in table III.2.

The probabilities are close to 1 for indicators A and B, demonstrating the entity linking quality
of Linked-DocRED. We note that the probability is a little higher for indicator A. Besides, we
notice that 78 % of Linked-DocRED entities are scored as A, that is, with the highest confidence.
Overall, the confidence is excellent throughout the whole dataset.

III.4.3 Linked-Re-DocRED

Concurrently to our work with Linked-DocRED, Tan et al. [217] found that DocRED was
incomplete, notably regarding relation annotations. They addressed this shortcoming by
complementing DocRED instances with the missing relation labels. They more than doubled
the number of relations: they labeled 120 k relations compared to the initial 50 k of DocRED.
They call this complemented dataset Re-DocRED. This results in increased performances for
the baselines (with an F1 score gain of 13 %).

As this work complements Linked-DocRED, we incorporate their supplementary relation
annotations in Linked-DocRED to form the Linked-Re-DocRED dataset (also available in our
repository). In the evaluation part, we do not include the results on Linked-Re-DocRED, as we
were unaware of this new dataset when they were run.
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III.5 Entity-Centric Metrics to Evaluate Information
Extraction

Metrics to evaluate an end-to-end IE model are a complex subject due to the existence of
two points of view: mentions (low-level) and entities (higher-level). Most of the extraction is
done with entities in mind, so evaluating the model from the entity perspective makes sense.
However, comparing a ground truth entity with a predicted one is nontrivial because they can
contain different mentions (no perfect intersection between true and predicted mentions) or
nearly identical ones but not equal (differences in boundaries, for example).

III.5.1 Named Entity Recognition (Mention F1)

NER is the only module working with entity mentions. Similarly to previous works (Zhong
et al. [113] among others), we consider a predicted mention to be correct if its boundaries are
the same as the ones of a ground truth mention. Thus, we define true positives (TP), false
positives (FP), and false negatives (FN) as follows:

�̂� = 𝒎 ⇐⇒ start(�̂�) = start(𝒎) ∧ end(�̂�) = end(𝒎), (III.4)

TP𝑁𝐸𝑅 =
∑̂︁
𝒎

∑︁
𝒎

1�̂�=𝒎, (III.5)

FP𝑁𝐸𝑅 =
∑̂︁
𝒎

1¬∃𝒎 s.t. �̂�=𝒎, (III.6)

FN𝑁𝐸𝑅 =
∑︁
𝒎

1¬∃�̂� s.t. �̂�=𝒎, (III.7)

with start(𝒎) (resp. end(𝒎)) the index in 𝒅 of the first (resp. last) token of 𝒎. By convention,
this formulation has no true negatives (TN)20. We use the micro aggregation to compute the F1
score, precision (P), and recall (R). As a side note, F1 micro equals the accuracy because we
are in a single-label prediction setting. We have:

P𝑁𝐸𝑅 =
TP𝑁𝐸𝑅

TP𝑁𝐸𝑅 +FP𝑁𝐸𝑅
, (III.8)

R𝑁𝐸𝑅 =
TP𝑁𝐸𝑅

TP𝑁𝐸𝑅 +FN𝑁𝐸𝑅

, (III.9)

F1𝑁𝐸𝑅 =
2 P𝑁𝐸𝑅 R𝑁𝐸𝑅

P𝑁𝐸𝑅 +R𝑁𝐸𝑅

. (III.10)

20A TN is a span that is not a true entity nor a predicted one. Given that the number of spans evolves quadratically
depending on the size of the document and entities are relatively scarce, TNs would crush TPs, FPs, and FNs,
leading to undiscriminative scores. Therefore, the consensus (e.g., [66, 113]) is to remove true negatives.
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III.5.2 Coreference Resolution (CR B3)

To evaluate coreferences, we use the B3 metric [218], which is used to compare clustering
assignments to true labels. This metric is recommended and widely employed to evaluate
coreference resolution models [21, 219, 220]. B3 defines precision and recall as follows:

P𝐶𝑅 = 𝔼�̂�=𝒎,�̂�′=𝒎′𝑃(𝒆 = 𝒆′|𝒆 = 𝒆′), (III.11)

R𝐶𝑅 = 𝔼�̂�=𝒎,�̂�′=𝒎′𝑃(𝒆 = 𝒆′|𝒆 = 𝒆′), (III.12)

with 𝒎 and 𝒎′ two distinct true mentions occurring in the same document (𝒎 belongs to
𝒆, and 𝒎′ belongs to 𝒆′), and �̂� and �̂�′ the corresponding predicted mentions (�̂� belongs
to 𝒆, and �̂�′ belongs to 𝒆′). If a true mention does not match any predicted mention, then a
placeholder �̂� belonging to a specific error entity is created. Conversely, if a predicted mention
does not match any true mention, then a placeholder 𝒎 belonging to a specific error entity is
created. Expected values for P𝐶𝑅 and R𝐶𝑅 are computed by iterating over all possible pairs of
mentions. B3 is calculated as an F1 score:

B3
𝐶𝑅 =

2 P𝐶𝑅 R𝐶𝑅
P𝐶𝑅 +R𝐶𝑅

. (III.13)

III.5.3 Joint Named Entity Recognition & Coreference Resolution (Entity
F1)

To provide a global metric to evaluate the extraction of entities (considering NER and CR), a
simple approach is to define a hard equality between 𝒆 and 𝒆:

𝒆 = 𝒆 ⇐⇒ �̂� = 𝕖 ∧ {�̂� ∈ 𝒆} = {𝒎 ∈ 𝒆}, (III.14)

the set equality is calculated with the mention equality as defined in equation (III.4). P𝐻𝑒𝑛𝑡𝑖𝑡𝑦,
R𝐻
𝑒𝑛𝑡𝑖𝑡𝑦, and F1𝐻𝑒𝑛𝑡𝑖𝑡𝑦 are derived in a similar fashion as equations (III.8) to (III.10).
However, these metrics strongly penalize coreferences mistakes. For instance, if a predicted

entity corresponds exactly to a true entity, except that it is missing a single coreference, it will
be counted as an error with the same negative impact as a completely missed entity. This results
in metrics with a low power of discrimination between models. To solve this shortcoming,
Zaporojets et al. [21] propose soft metrics instead. They redefine TP, FP, and FN so they are
not integers but real numbers characterizing the similarity level between the predicted and true
mentions of entities:

TPP
𝑒𝑛𝑡𝑖𝑡𝑦 =

∑︁
𝕖

∑︁
𝒆 s.t. �̂�𝒆=𝕖

|{�̂� ∈ 𝒆} ∩ {𝒎 ∈ 𝒆 s.t. 𝕖𝒆 = 𝕖}|
|{�̂� ∈ 𝒆}| , (III.15)

TPR
𝑒𝑛𝑡𝑖𝑡𝑦 =

∑︁
𝕖

∑︁
𝒆 s.t. 𝕖𝒆=𝕖

|{𝒎 ∈ 𝒆} ∩ {�̂� ∈ 𝒆 s.t. �̂�𝒆 = 𝕖}|
|{𝒎 ∈ 𝒆}| , (III.16)

FP𝑒𝑛𝑡𝑖𝑡𝑦 = |{𝒆 ∈ D}| − TPP
𝑒𝑛𝑡𝑖𝑡𝑦, (III.17)

FN𝑒𝑛𝑡𝑖𝑡𝑦 = |{𝒆 ∈ D}| − TPR
𝑒𝑛𝑡𝑖𝑡𝑦, (III.18)

46

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0111/these.pdf © [P-Y. Genest], [2024], INSA Lyon, tous droits réservés



III.5 Entity-Centric Metrics to Evaluate Information Extraction

with the intersection between true and predicted mentions computed with the mention
equality defined in equation (III.4). They define two versions of the true positives: TP𝑃𝑒𝑛𝑡𝑖𝑡𝑦 is
normalized by the predicted mentions (precision orientation), and TP𝑅𝑒𝑛𝑡𝑖𝑡𝑦 by the true mentions
(recall orientation). Then, Zaporojets et al. derive:

P𝑆𝑒𝑛𝑡𝑖𝑡𝑦 =
TPP

𝑒𝑛𝑡𝑖𝑡𝑦

TPP
𝑒𝑛𝑡𝑖𝑡𝑦 +FP𝑒𝑛𝑡𝑖𝑡𝑦

, (III.19)

R𝑆
𝑒𝑛𝑡𝑖𝑡𝑦 =

TPR
𝑒𝑛𝑡𝑖𝑡𝑦

TPR
𝑒𝑛𝑡𝑖𝑡𝑦 +FN𝑒𝑛𝑡𝑖𝑡𝑦

, (III.20)

F1𝑆𝑒𝑛𝑡𝑖𝑡𝑦 =
2 P𝑆

𝑒𝑛𝑡𝑖𝑡𝑦
R𝑆
𝑒𝑛𝑡𝑖𝑡𝑦

P𝑆
𝑒𝑛𝑡𝑖𝑡𝑦
+R𝑆

𝑒𝑛𝑡𝑖𝑡𝑦

. (III.21)

III.5.4 Relation Extraction (Relation F1)

Comparing entities composed of multiple mentions is not trivial, but it is even more complex for
relations. Firstly, we can build hard metrics P𝐻

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
, R𝐻

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
, F1𝐻

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
, following a principle

similar to the last section. We define the relation equality as:

𝒓 = 𝒓 ⇐⇒ �̂� = 𝕣 ∧ 𝒆ℎ𝑒𝑎𝑑 = 𝒆ℎ𝑒𝑎𝑑 ∧ 𝒆𝑡𝑎𝑖𝑙 = 𝒆𝑡𝑎𝑖𝑙 , (III.22)

the entity equality is computed with equation (III.14). However, it is too strict to eliminate
an entity and all its relations if it is missing only one coreference. Zaporojets et al. [21] also
propose a soft Relation F1 score, which tackles this problem. In brief, it compares the relations
at a mention level, checking that both predicted mentions correspond to gold mentions and that
there is this relation between them. Then, the results are aggregated at the entity level. They
define TPP

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
and TPR

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
as follows:

TPP
𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =

∑︁
𝕣

∑︁
𝒓 s.t. �̂�𝒓=𝕣

���� {(�̂�ℎ𝑒𝑎𝑑 , �̂�𝑡𝑎𝑖𝑙) s.t. �̂�ℎ𝑒𝑎𝑑 ∈ 𝒆ℎ𝑒𝑎𝑑 , �̂�𝑡𝑎𝑖𝑙 ∈ 𝒆𝑡𝑎𝑖𝑙}∩
{(𝒎ℎ𝑒𝑎𝑑 ,𝒎𝑡𝑎𝑖𝑙) s.t. 𝒎ℎ𝑒𝑎𝑑 ∈ 𝒆ℎ𝑒𝑎𝑑 ,𝒎𝑡𝑎𝑖𝑙 ∈ 𝒆𝑡𝑎𝑖𝑙 , 𝕣𝒓 = 𝕣}

����
|{(�̂�ℎ𝑒𝑎𝑑 , �̂�𝑡𝑎𝑖𝑙) s.t. �̂�ℎ𝑒𝑎𝑑 ∈ 𝒆ℎ𝑒𝑎𝑑 , �̂�𝑡𝑎𝑖𝑙 ∈ 𝒆𝑡𝑎𝑖𝑙}|

,

(III.23)

TPR
𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =

∑︁
𝕣

∑︁
𝒓 s.t. 𝕣𝒓=𝕣

���� {(𝒎ℎ𝑒𝑎𝑑 ,𝒎𝑡𝑎𝑖𝑙) s.t. 𝒎ℎ𝑒𝑎𝑑 ∈ 𝒆ℎ𝑒𝑎𝑑 ,𝒎𝑡𝑎𝑖𝑙 ∈ 𝒆𝑡𝑎𝑖𝑙}∩
{(�̂�ℎ𝑒𝑎𝑑 , �̂�𝑡𝑎𝑖𝑙) s.t. �̂�ℎ𝑒𝑎𝑑 ∈ 𝒆ℎ𝑒𝑎𝑑 , �̂�𝑡𝑎𝑖𝑙 ∈ 𝒆𝑡𝑎𝑖𝑙 , �̂�𝒓 = 𝕣}

����
|{(𝒎ℎ𝑒𝑎𝑑 ,𝒎𝑡𝑎𝑖𝑙) s.t. 𝒎ℎ𝑒𝑎𝑑 ∈ 𝒆ℎ𝑒𝑎𝑑 ,𝒎𝑡𝑎𝑖𝑙 ∈ 𝒆𝑡𝑎𝑖𝑙}|

,

(III.24)

FP𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = |{𝒓 ∈ D}| − TPP
𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, (III.25)

FN𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = |{𝒓 ∈ D}| − TPR
𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, (III.26)
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with the intersection between the pairs of predicted and true mentions computed with
equation (III.4) (�̂�ℎ𝑒𝑎𝑑 = 𝒎ℎ𝑒𝑎𝑑 ∧ �̂�𝑡𝑎𝑖𝑙 = 𝒎𝑡𝑎𝑖𝑙). P𝑆

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
, R𝑆

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
, and F1𝑆

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
are

calculated as defined in equations (III.19) to (III.21).

III.5.5 Entity Linking (Hit@1, Hit@5, NF, MR)

To evaluate entity linking, we propose to use the Hit@1, Hit@5, Not Found, and Mean Rank
metrics:

• Hit@1. The proportion of entities where the correct resource is the first candidate
returned by the entity linker.

• Hit@5. The proportion of entities where the correct resource is in the first five candidates
returned by the entity linker.

• Not Found (NF). The proportion of entities where the entity linker does not find the
correct resource.

• Mean Rank (MR). The average rank where the correct resource is found (only for entities
for which one candidate is correct).

We have the same aggregation problem for these metrics, as our predicted entities are not
strictly equal to the gold entities. We employ the same idea as Entity F1 by comparing entities
at the mention level and then aggregating the comparisons at the entity level. We suppose that
each predicted entity 𝒆 is associated with an ordered list of candidate resources for the entity
linking: �̂�(𝒆) = [𝑜0, 𝑜1, ...], 𝑜0 being the most related candidate. We give each candidate 𝑜 as
score fEL, corresponding to its index in �̂�(𝒆):

fEL(𝑜𝑖 |𝒆) =
{
𝑖 if 𝑜𝑖 ∈ �̂�(𝒆),
|�̂�(𝒆) | + 1 otherwise.

(III.27)

As a side note, if the entity linking model returns probabilities associated with each 𝑜,
they can be used in place of fEL(𝑜𝑖 |𝒆). Then, for each mention of a gold entity, we find the
corresponding predicted mention, if it exists, using equation (III.4). With this, we get the
ordered list of candidates associated with the mention. To aggregate the candidates for all the
mentions of a gold entity, we sum the fEL(𝑜𝑖 |𝒆):

fEL(𝒆, 𝑜𝑖) =
∑︁

𝒆,�̂�∈𝒆,𝒎∈𝒆 s.t. �̂�=𝒎

fEL(𝑜𝑖 |𝒆). (III.28)

The ranking is obtained by sorting the scores in ascending order, with the candidate with the
lower score being the best. Hit@1, Hit@5, NF, and MR are calculated with this ranking. As an
aside, NUM or TIME entities are ignored during this evaluation, as they are not disambiguated.
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III.5.6 Unsupervised and Open-World Metrics

The metrics defined in the previous sections are adapted to evaluate supervised, few-shot,
or zero-shot baselines. They need, however, minor modifications to evaluate unsupervised
or open-world baselines where the set of true entity/relation types is not equal to the set of
predicted entity/relation types. This challenge is significant for unsupervised models: as they
do not know the target classes, the predicted clusters cannot be directly mapped to the true
entity types (no direct link between cluster IDs and class IDs). This problem impacts NER
(entity types) and RE (relation types). As a result, traditional classification metrics such as
precision, recall, and F1 score cannot be used to evaluate unsupervised IE models.

Multiple metrics have been proposed to compare clustering to true labels. Compared to
classification metrics, they are robust to permutations (meaning the cluster IDs will not impact
the final score) and to partial matches (e.g., two or more clusters that correspond to a single
class or the opposite). We implement four widely used metrics: B3 [218], V-measure [221],
Adjusted Mutual Information (AMI) [2, 222], and Adjusted Rand Index (ARI) [3, 4].

B3 and V-measure provide alternative definitions for precision (homogeneity for V-measure)
and recall (completeness for V-measure) and allow the calculation of an F1 score. V-measure
tends to penalize more small impurities in a pure cluster than in a less pure cluster, where B3

has a more linear behavior [223].
AMI and ARI give a single value. The main advantage of AMI and ARI over V-measure and

B3 is that they are adjusted for chance: a random clustering will reliably produce AMI and ARI
close to 0. Additionally, they are defined over [−1, 1]: scores below zero mean methods that
are less effective than random clustering. Romano et al. [224] recommends using AMI with
datasets having unbalanced class distributions and ARI with balanced distributions.

To apply these metrics for NER or RE, the correspondences between the true mentions (resp.
relations) and predicted mentions (resp. relations) is calculated with the equalities defined
in equations (III.4) and (III.22)21. A “predicted” placeholder is created with a specific error
entity (resp. relation) type for the true mentions (resp. relations) that were not predicted (FN).
Conversely, for the predicted mentions (resp. relations) that do not exist in the ground truth
(FP), a “true” placeholder with a specific error entity (resp. relation) type is created.

We recall the definition of the four metrics in the following paragraphs. We take the example
of NER. 𝒎, �̂�, 𝕖, or �̂� are considered to be random variables in the definitions. To derive the
actual values, the reader has to enumerate all 𝒎 ∈ D and �̂� ∈ D.

B3 Similarly to section III.5.2, we have:

P = 𝔼�̂�=𝒎,�̂�′=𝒎′𝑃(𝕖 = 𝕖′|�̂� = �̂�′), (III.29)

R = 𝔼�̂�=𝒎,�̂�′=𝒎′𝑃(�̂� = �̂�′|𝕖 = 𝕖′), (III.30)

B3 =
2 P R
P+R

, (III.31)

21The types checks �̂� = 𝕖 or �̂� = 𝕣 are disabled (as there is no direct mapping between types and clusters). These
checks are directly integrated into B3, V-measure, ARI, or AMI.
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V-measure V-measure defines homogeneity and completeness, relying on the conditional
Shannon entropy [2]:

Homogeneity = 1 − H(�̂�|𝕖)
H(�̂�) , (III.32)

Completeness = 1 − H(𝕖|�̂�)
H(𝕖) , (III.33)

V =
2 Homogeneity ·Completeness
Homogeneity+Completeness

, (III.34)

with H the Shannon entropy. Homogeneity has a similar interpretation as precision, and
completeness as recall.

Adjusted Rand Index The Rand Index is defined as the probability that the clustering and
true labels assignment are compatible:

RI = 𝔼�̂�=𝒎,�̂�′=𝒎′𝑃(�̂� = �̂�′⇔ 𝕖 = 𝕖). (III.35)

The Adjusted Rand Index is the adjustment for chance of the RI, such that a random clustering
will produce scores close to or equal to zero.

Adjusted Mutual Information The Mutual Information score measures the mutual depen-
dence between the true entity type and predicted entity type random variables. It is defined
as:

MI = H(𝕖) − H(𝕖|�̂�),
= H(�̂�) − H(�̂�|𝕖).

(III.36)

Similarly to ARI, the Adjusted Mutual Information is the adjustment for chance of the MI. In
practice, AMI is very related to the V-measure, as the V-measure corresponds to the Normalized
Mutual Information, another method to normalize the MI. V-measure is not adjusted for chance.

III.6 Experiments

III.6.1 Baseline

As seen in section III.2, an end-to-end IE model can be seen as a four-module process with NER,
CR, EL, and RE. Our objective for this baseline is to provide a simple IE model with results
comparable to those of current state-of-the-art approaches. Recent papers that use DocRED as
a benchmark focus on document-level RE [176, 178, 180, 186], ignoring NER, coreference
resolution, and entity linking. Additionally, no document-level end-to-end IE model exists (see
chapter II). Therefore, we propose implementing an IE pipeline, that is, a multi-stage model,
where the four subtasks are implemented with specialized modules. As a side note, very recent
models start to tackle jointly multiple tasks in a document-level setting [126, 141, 175], but
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they were not available at the time Linked-DocRED was designed. The only exception is the
work of Verlinden et al. [20] that jointly predicts NER, CR, and RE, which we included in our
evaluation.

Named Entity Recognition We propose to use the simple yet effective span-based NER
proposed by Zhong et al. [113] (PURE). This model relies on BERT [6], which can only handle
documents with at most 512 tokens. As we have documents with more than 512 tokens, we
propose to replace BERT with Longformer [225], which can encode documents up to 4,096
tokens, with only a marginal decrease in performance compared to BERT.

Coreference Resolution We propose implementing a well-used model, NeuralCoref22. This
model uses NER, parsing, and pos-tagging features to predict coreferences.

Relation Extraction We do not use the DocRED baseline, as it is based on Bi-LSTMs and
GloVe embeddings [89], which no longer correspond to the best state-of-the-art models, such as
those based on large language models. Similarly to Prieur et al. [44], we propose to use ATLOP
[178] to extract relations. Contrary to concurrent approaches (e.g., [21, 102, 176, 177, 226]),
which often represent the knowledge explicitly as a graph that can be processed with Graph
Neural Networks (GNN) for inference; Zhou et al. [178] propose to use implicit knowledge
representations produced with BERT, which results in a simple, efficient and effective model.

In the rest of the paper, we call this NER-CR-RE ensemble PNA (for PURE [113], NeuralCoref,
and ATLOP [178]). This pipeline is trained using the hyperparameter values proposed by the
authors of PURE [113], NeuralCoref, and ATLOP [178].

Entity Linking We propose two very simple models: EL-Wikidata and EL-Wikipedia because
entity linking has not been studied much in the context of end-to-end IE models ([20, 21, 44]
use very basic approaches). For EL-Wikidata, we search each mention �̂� of a predicted entity 𝒆

in Wikidata using the Wikidata search API. This API returns a ranked list of candidate Wikidata
entities most related to the mention: �̂�(�̂�) = [𝑜0, 𝑜1, ..., 𝑜 |�̂�(�̂�) |−1], 𝑜0 being the best candidate.
We give each candidate a score fEL, corresponding to its index in �̂�(�̂�):

fEL(𝑜𝑖 |�̂�) =
{
𝑖 if 𝑜𝑖 ∈ �̂�(�̂�),
|�̂�(�̂�) | + 1 otherwise.

(III.37)

To aggregate the candidates for all the mentions of an entity, we sum the fEL(𝑜𝑖 |�̂�):

fEL(𝑜𝑖) =
∑̂︁
𝒎∈𝒆

fEL(𝑜𝑖 |�̂�). (III.38)

The ranking is obtained by sorting the scores in ascending order, with the candidate with the
lower score being the best. EL-Wikipedia follows the same principle as EL-Wikidata, replacing
the Wikidata search API with Wikipedia.
22Available at https://github.com/huggingface/neuralcoref.
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Table III.3: Evaluation of the PNA baseline and other IE models on the development split
of Linked-DocRED using our proposed entity-level metrics. For Entity F1 and Relation F1,
the soft metric is primarily displayed along with the hard aggregation in parenthesis. During
evaluation, the ATLOP baseline (second line) can access ground truth entities and coreferences.
In the second table, the first two lines access ground truth entities and coreferences, whereas
PNA entity linking is based on its imperfect entity and coreference predictions.

Mention F1 ↑ CR B3 ↑ Entity F1 ↑ Relation F1 ↑

Verlinden et al. [20] - - - (71.8) - (25.7)
ATLOP [178] - - - - 63.4 (63.4)

PNA (ours) 77.2 80.4 83.9 (82.9) 48.9 (41.1)

Entity Linking
Hit@1 ↑ Hit@5 ↑ NF ↓ MR ↓

Ground truth entities
EL-Wikipedia 52.3 61.7 32.1 2.1
EL-Wikidata 59.0 68.5 26.3 1.7

PNA (ours)
EL-Wikipedia 46.0 53.9 40.8 2.1
EL-Wikidata 51.1 59.1 36.2 1.7

III.6.2 Results

The evaluation results are shown in table III.3. We also display the results of an integrated,
multitask IE pipeline from Verlinden et al. [20] and the RE model ATLOP [178] with ground
truth entities and coreferences. All methods are trained on the train split of Linked-DocRED
and evaluated on its developement split. For Entity F1 and Relation F1, we show the soft and
hard metrics (the hard aggregation is in parenthesis, to compare with [20, 178]).

Firstly, the Mention F1, B3, and Entity F1 or PNA are superior to 75 % (resp. 77.2, 80.4, and
83.9), which is in the range of what is currently state-of-the-art for DocRED [20]. Compared
to Verlinden et al. [20], our baseline obtains better results in hard Entity F1 (and Relation F1)
while being much simpler to implement and run. A similar observation was made by Prieur
et al. [44] on the DWIE dataset [21].

Our baseline performance for RE is relatively low when we look at table III.3. There is some
error cascading, as the NER and the coreference resolver are imperfect. This is highlighted
when we look at ATLOP [178] with ground truth entities and coreference. The difference in
soft Relation F1 is 14.5 points (23 % of difference). This is a clear challenge of an IE pipeline:
due to its sequential nature, performances are progressively decreasing as one module follows
another. Taken separately, the performances of ATLOP are state-of-the-art, but with the full
pipeline, a significant part of the performance is lost. Additionally, even with the ground truth
entities and coreferences, the performances of ATLOP are far from perfect. They are linked to
the complexity of handling documents, with a long context and meaningful information spread
in several places (indeed, 40.7 % of the relations in Linked-DocRED need analyzing multiple
sentences [1]). Full document-level relation extraction is challenging.
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III.7 Conclusion

The final step in our evaluation is entity linking. Overall, we can see a small advantage for
EL-Wikidata compared to EL-Wikipedia: +5.5 points for Hit@1 and Hit@5, −5 points for
Not Found, and −0.5 for Mean Rank. We think it is linked to the fact that a Wikidata entity
possesses multiple surface forms at the same time (rdfs:label or rdfs:aliases predicates),
which helps during the API search. We observe an 8 point decrease in Hit@1, Hit@5, and
Not Found metrics when we compare the performance of gold entities to those extracted with
our baseline. In all cases, however, around one-third of entities are wrongly disambiguated
(Not Found), and only 50 % – 60 % of entities are correctly disambiguated with the first match
(Hit@1). The entity linking task is challenging, particularly with an imperfect entity and
coreference extraction.

III.7 Conclusion
In this work, we introduce Linked-DocRED, to the best of our knowledge, the first large-scale,
document-level IE dataset with manual annotations for entities, coreferences, relations, and
entity linking. To do so, we develop a semi-automatic entity linking process that ensures
human-quality annotations. We also propose a new entity-centric entity linking metrics and
open-world and unsupervised metrics to finalize the definition of a complete benchmark for
end-to-end IE model evaluation.

Experimental results of a strong IE pipeline baseline demonstrate the challenges linked to
end-to-end IE:

• Cascading errors. Imperfect NER and CR negatively impact RE and EL, leading to a
14.5 % decrease in Relation F1 and 7.9 % in EL Hit@1.

• The complexity of handling documents. Even with perfect entities and coreferences, the
RE and EL performances are far from perfect (63.4 % in Relation F1, and 59 % for EL
Hit@1).

These results are essential to analyze our main research question. First, no one ever tested an
end-to-end IE model covering the four IE tasks on a diverse, large-scale, manually labeled, and
document-level dataset. In that regard, this experiment fully meets its objectives. However,
when looking at the big picture, our goal is not only to implement an end-to-end IE model, but
we also want it to be low-resource and open-world. Logically, these constraints will hurt the
already not ideal performances (they are, in fact, insufficient to consider a production launch).
Therefore, instead of pursuing the currently uncertain path toward end-to-end open-world and
low-resource IE23, we explore granular IE subtasks to bring significant improvements towards
open-world and low-resource settings. This is the subject of our two following contributions:
PromptORE (next chapter IV) and CITRUN (chapter V).

23The adjective “currently” has its importance. When confronted with this choice (early 2023), we did not see
any research directions leading to dramatic improvements that would lead to acceptable models. Very recent
models (e.g., AutoRE [126]) start to attain a decent level of performance (still far from deployable) for joint
NER and RE in a document-level and open-world setting.
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IV PromptORE
Prompt-Based Open-World and Unsupervised Relation Extrac-

tion

Unsupervised Relation Extraction (RE) aims to identify relations between entities in text
without having access to labeled data during training. This setting is particularly relevant for
domain-specific RE where no annotated dataset is available and for open-world RE where the
types of relations are a priori unknown. Although recent approaches achieve promising results,
they heavily depend on hyperparameters critical for their performances. Unfortunately, they fail
to explain how to adjust these without labeled data, making them incompatible with a realistic
unsupervised setting.

Therefore, to diminish the reliance on hyperparameters, we propose PromptORE, our
“Prompt-based Open-World Relation Extraction” model. We adapt the prompt-tuning paradigm
used in low-resource approaches to work in an unsupervised setting and use it to embed
sentences expressing a relation. We then cluster these embeddings to discover candidate relation
types and experiment with different strategies to automatically estimate an adequate number of
clusters. To our knowledge, PromptORE is the first unsupervised RE model that does not need
hyperparameter tuning.

Results on three general and specific domain datasets show that PromptORE consistently
outperforms state-of-the-art models with a relative gain of more than 40 % in B3, V-measure,
and ARI. Qualitative analysis also indicates PromptORE’s ability to identify semantically
coherent clusters that closely resemble the actual relation types.

The source code of PromptORE is available in a public repository1 and distributed under an
open-source license.

Most of the work described in this chapter, including text, figures, and tables, was presented
at CIKM’22 [33].

Contents
IV.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
IV.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

IV.2.1 Few-Shot Relation Extraction . . . . . . . . . . . . . . . . . . . . . 57
IV.2.2 Unsupervised Relation Extraction . . . . . . . . . . . . . . . . . . . 58

1Available at https://github.com/alteca/PromptORE.
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IV.5.1 Comparison With the Baselines . . . . . . . . . . . . . . . . . . . . 66
IV.5.2 Performance on Domain-Specific Datasets . . . . . . . . . . . . . . . 68
IV.5.3 Does PromptORE “Extract” Relations? . . . . . . . . . . . . . . . . 69
IV.5.4 Alternative Prompts . . . . . . . . . . . . . . . . . . . . . . . . . . 69
IV.5.5 Clustering Without Knowing 𝑘 . . . . . . . . . . . . . . . . . . . . . 70
IV.5.6 Analysis of PR Prompt Predictions . . . . . . . . . . . . . . . . . . 74

IV.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

IV.1 Introduction
In this chapter, we focus on Relation Extraction (RE), which consists of identifying the relation
linking two entities in the context of a document.

RE is often seen as a supervised task [227], thus relying on datasets labeled with a predefined
set of relations. However, this setting can be restrictive for some applications, especially
domain-specific RE lacking annotated data or open-world RE where we do not know in advance
the relations expressed in the dataset. Therefore, more flexible paradigms have been proposed,
including distant supervision, few-shot learning, and unsupervised learning. Distant supervision
[156, 157] annotates data automatically thanks to heuristics (such as Wikipedia hyperlinks or
Wikidata predicates) or pre-trained models (especially Large Language Models). Few-shot
learning [29] learns from a very small set of labeled instances. Unsupervised RE does not
require a training dataset with labeled relations and assumes no prior knowledge about expected
relation types.

Several recent open-world RE (OpenRE) approaches obtain interesting results on diverse
datasets containing tens or hundreds of relation types [196, 197, 228]. They often try to compute
a vector representation of the relation expressed in the sentence (relation embedding) and then
cluster all the embeddings to identify groups of similar relations. Most of these methods rely
on hyperparameters (e.g., number of epochs, regularization, early stopping, number of relation
types, ...) that have a significant impact on their overall performance. However, tuning these
hyperparameters most often requires access to labeled data, thus limiting the applicability of
such models in a real-world unsupervised scenario.

We therefore propose PromptORE, our “Prompt-based Open-World Relation Extraction”
model. Contrary to previous approaches, it relies on one hyperparameter at most: the target
number 𝑘 of relation types to be extracted. Our experiments show that even when no educated
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guess can be made about 𝑘 , an efficient estimate can easily be obtained automatically. Thus,
to our knowledge, PromptORE is the first proposal for an unsupervised RE system that can
operate in a fully unsupervised setting.

To achieve this, we first compute a relation embedding for each instance of a dataset
that represents the relation type expressed in the instance. Contrary to previous approaches
that fine-tuned Encoder-Only Language Models (EncLM) [196, 197, 198], we use the novel
prompt-tuning paradigm. Prompt-tuning replaces the usual training by designing a prompt
(i.e., a text inputted to EncLM) that elicits as much information as possible from the language
model. Prompt-tuning is already used in few-shot RE [229, 230, 231, 232]. We propose to
go further and adapt this paradigm to work in a fully unsupervised way. It has many benefits:
1. it does not involve training or fine-tuning the EncLM, thus removing a significant number
of hyperparameters, 2. the proposed encoder is extremely simple, yet 3. we show that these
prompt-based relation embeddings provide better results than current state-of-the-art methods.
Usual clustering algorithms are then applied to group together the embeddings to discover
relation types.

Let us summarize our main contributions:

• We propose PromptORE, a novel OpenRE model that minimizes the number of hyper-
parameters and provides straightforward ways to tune its only hyperparameter 𝑘 in a
completely unsupervised setting (section IV.3.2).

• We adapt the prompt-tuning paradigm to an unsupervised setting, which allows us to
leverage more expressive embeddings than previous entity-pair representations [64, 196,
197] (section IV.3.1).

• We show that this model consistently outperforms previous state-of-the-art approaches on
three datasets covering general and specific domains (section IV.5). We also demonstrate
that the predicted clusters are semantically coherent and close to the true relation types
(section IV.5.5).

IV.2 Related Work
Relation extraction aims to discover the binary relation 𝕣 that links two entities mentioned
in a text 𝒅. A relation instance 𝒓 is a triple (𝒆ℎ𝑒𝑎𝑑 , 𝒆𝑡𝑎𝑖𝑙 , 𝕣): 𝒆ℎ𝑒𝑎𝑑 is the subject entity of the
relation, 𝒆𝑡𝑎𝑖𝑙 the object entity, and 𝕣 the relation type. We draw the reader’s eye to the potential
ambiguity problem with the term “relation”, which can refer to a relation instance 𝒓 or a relation
type 𝕣. For clarity, we use the term relation instance 𝒓 and relation interchangeably, and we
distinguish relation type 𝕣.

Even though RE from documents is the most general paradigm, the majority of unsupervised
models focus on extraction within a single sentence, ignoring inter-sentence relations [233,
234], due to the complexity of document-level RE (as we have seen in chapter II). Recent
approaches follow a conceptual two-step process [64, 104, 121, 235]:

1. Relation Embedding, which computes a vector representation of the relation instance;
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2. Relation Type Classification.

In practice, methods can be integrated, that is, jointly modeling the two phases in a single
model [22, 64]; or separated with two models trained separately [197, 223]. To compute
relation embeddings, word embedding models are often used, such as GLoVe [89], ELMO
[236], Bi-LSTM embeddings [15], or EncLM embeddings such as BERT [6, 15].

IV.2.1 Few-Shot Relation Extraction

This setting aims to learn a relation extraction model from the least amount of labeled data.
Models focus on relation type classification: they suppose the existence of a relation between
two entities [29], ignoring the case of sentences mentioning unrelated entities. Snell et al. [237]
propose to use prototypical networks to determine a prototype for each relation type and predict
the type by measuring the distance between the relation instance embedding and each prototype.
Zhao et al. [198] and Ren et al. [238] propose to improve this method using transfer-learning
from out-of-domain labeled datasets.

Recent few-shot methods consider the use of prompt-tuning with BERT and, more broadly,
EncLM [239], as it allows for more efficient learning in low-resource setting [240]. Prompt-
tuning replaces fine-tuning by designing a prompt, a piece of text containing the special [MASK]
token, and asks an EncLM to predict the embedding of this [MASK] token. This embedding
is then compared with a set of target tokens (that can be seen as relation type prototypes)
to determine the type expressed in this sentence [229, 230, 231, 232]. Efforts are focused
on optimizing the prompt PR and selecting a set of target tokens effectively representing the
relation types. In particular, Jiang et al. [241] propose text-mining and paraphrasing-based
methods to generate prompts.

The current major limitation with few-shot RE is the closed-world hypothesis, which stipulates
that relation types must be known in advance (although recent papers have started to explore
none-of-the-above prediction [206, 229]). Another shortcoming is the diversity of evaluation
settings highlighted by Perez et al. [29]:

• Tuned few-shot learning [155, 242]. They tune the learning algorithm on a large annotated
validation dataset from the same domain as the test set. Similarly, some papers do not
explain how to adjust hyperparameters (especially learning rate, number of epochs, or
training steps that are critical to control overfitting) without the use of an in-domain
validation set [243, 244]. In this case, the term few-shot is questionable.

• Multi-distribution few-shot learning [237, 238]. They access labeled data from many
domains (different from the target domain) to adjust hyperparameters or train the model
to learn faster (meta-learning). This does not translate to languages where annotated data
is scarce.

• True few-shot learning. No validation data (in-domain or out-of-domain) are used.

Only the last setting can be considered true few-shot learning and applies to real-world scenarios.
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IV.2.2 Unsupervised Relation Extraction

Unsupervised RE aims to extract relations without having access to a labeled dataset during
training. Approaches can be divided into two subgroups: triple extraction (that we presented in
detail in section II.5) and relation typing. The main weakness of triplet-based approaches is
the lack of predicate disambiguation. Indeed, as they rely on surface forms for the predicates,
identifying the generic relation type or working with grammatically incorrect sentences (e.g.,
social network posts) is particularly challenging.

To solve this problem, Yao et al. [245] first proposed to learn a relation classifier using Latent-
Dirichlet Allocation [246], a generative probabilistic model. This relation classifier allows
grouping together relation instances with very different grammatical predicates. Nowadays,
most of these relation typing methods rely on relation embeddings. They compute an embedding
that encodes the underlying relation type, which is then used to identify groups of relations
that share the same relation type. The earliest methods used syntactic and semantic features
[245, 247, 248]. Elsahar et al. [249] add word embedding features based on GloVe [89], apply
dimensionality reduction methods, and an agglomerative clustering model to identify clusters
of relation instances. Marcheggiani et al. [248] use a fill-in-the-blank task: they mask one
entity and try to predict it using a Variational Auto-Encoder (VAE) [250], proving the benefit of
generating a supervision signal. This method is further improved by adding two regularization
losses to limit overfitting [223] and by finding a more effective formulation of the VAE task
[251]. However, Tran et al. [252] outperforms VAE approaches only using the entity types of
the subject/object entities (in one-hot encoding) as their relational embedding, demonstrating
the benefits of using available metadata.

Hu et al. [197] adopt another supervision signal with SelfORE: they compute pseudo labels
using a k-means clustering on relation embeddings and train a BERT classifier to reproduce
them. Using the fine-tuned BERT model, new relation embeddings are generated, clustered,
and pseudo-labels are computed. SelfORE is iteratively trained in a self-learning loop. As an
alternative, Wu et al. [196] propose to learn a distance metric representative of the relation types
(using siamese neural networks [253]) to compare pairs of instances. This metric is learned
on an annotated dataset and applied to unlabeled data to identify instances expressing similar
relation types (the training and test datasets are from different domains). Lou et al. [228] use
ranked list loss [254] as an alternative to siamese neural networks. Finally, recent unsupervised
RE methods tend to use transfer-learning: learning some relation embeddings or metrics on
general domain annotated datasets and adapting them to unsupervised data coming from a
specific domain [196, 198, 228]. Compared to triples extraction, relation typing assumes that
there is always a relation between the two entities, which can be seen as a limitation.

To allow evaluation of such OpenRE models, previous works tend to train them on labeled
datasets and compare their predictions with ground truth relations using external clustering
evaluation metrics such as V-measure [221], Adjusted Rand Index [3, 4] or B3 [218].

Are Current OpenRE Models Completely Unsupervised? Similarly to the observation of
Perez et al. [29] for few-shot learning, we notice that unsupervised RE methods are trained and
evaluated with various settings. In particular, they also suffer from the hyperparameter tuning
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problem approaches. Indeed, they rely extensively on hyperparameters that need to be adjusted:
number of epochs or training steps [196, 197, 228, 248, 251, 252], learning rate, regularization
[223], entity types [252], early-stopping [252], and most importantly the number of relations
types 𝑘 the model is supposed to extract [196, 197, 223, 228, 248, 249, 251, 252]. In a realistic
unsupervised setting, these hyperparameters are extremely hard to determine, and cited papers
do not present satisfactory methods to estimate them without labeled data. We conclude that
these approaches are not fully unsupervised regarding hyperparameter tuning, which, in our
opinion, restricts their use in real-world applications.

Therefore, in this chapter, we pursue the objective of exploring true unsupervised RE that
does not need annotated data during its training procedure or for hyperparameter tuning. When
this contribution was made (before GPT-3.5 and ChatGPT [30]), we were the first to diminish
the reliance on hyperparameters to attain more unsupervised RE.

IV.3 Description of PromptORE
PromptORE aims to extract the binary relation 𝒓 between two already known entities 𝒆ℎ𝑒𝑎𝑑 and
𝒆𝑡𝑎𝑖𝑙 present in the same sentence. As in previous unsupervised RE works, we focus on sentence
RE, even though some relations may be missed. More precisely, as we follow an unsupervised
setting, the first objective of PromptORE is to group relation instances expressing the same
relation type 𝕣 without having access to labeled data during training and hyperparameter tuning.
Our second objective is to minimize the number of hyperparameters that PromptORE needs
and provide unambiguous procedures to adjust them without annotated data.

To achieve these goals, we suppose we have access to a dataset D (see figure IV.1) containing
instances with the following properties:

1. An instance is described with a triple (𝒆ℎ𝑒𝑎𝑑 , 𝒆𝑡𝑎𝑖𝑙 , 𝒅), where 𝒅 is the instance text 𝒆ℎ𝑒𝑎𝑑
and 𝒆𝑡𝑎𝑖𝑙 are two entities in 𝒅.

2. We suppose that 𝒆ℎ𝑒𝑎𝑑 and 𝒆𝑡𝑎𝑖𝑙 have already been extracted (but not typed).

3. We suppose 𝒆ℎ𝑒𝑎𝑑 and 𝒆𝑡𝑎𝑖𝑙 have a single mention 𝒎ℎ𝑒𝑎𝑑 and 𝒎𝑡𝑎𝑖𝑙 in 𝒅2. To simplify
mathematical notations, in this chapter only, the text of 𝒆ℎ𝑒𝑎𝑑 (resp. 𝒆𝑡𝑎𝑖𝑙) is the text of its
unique mention 𝒎ℎ𝑒𝑎𝑑 (resp. 𝒎𝑡𝑎𝑖𝑙).

4. In the instance text 𝒅, 𝒆ℎ𝑒𝑎𝑑 and 𝒆𝑡𝑎𝑖𝑙 are linked by a binary relation of type 𝕣. We do not
consider the case where there is no relation between 𝒆ℎ𝑒𝑎𝑑 and 𝒆𝑡𝑎𝑖𝑙 .

5. We cannot access any relation label during training and hyperparameter tuning.

As a side note, properties 1–4 are standard for unsupervised RE [197, 223, 252]. R is the set
of the 𝑘 relation types in D. We have no information about the types in R (no label, description,
entity type compatibility, etc.). Regarding 𝑘 , it can either be given by the user or automatically

2As an aside, this constraint is more related to the evaluation datasets (which contain only one mention per entity)
than PromptORE.
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d1 Queen Elizabeth II was married to Prince Philip.

d2 Michelle Obama, Barack Obama's wife, was born in Chicago.

d3 Like the Everest, Mount Annapurna is in the Himalayas.

 …

Relation Encoder

Prompt Generation

Prompt Embedding

(ehead , etail, d1) = {d1} {ehead} [MASK] {etail}.

= Queen Elizabeth II was married to Prince 

Philip. Queen Elizabeth II [MASK] Prince Philip.

EncLM

…… …

QueenElizabeth Philip . Queen [MASK] Prince Philip .

…… …

h1 = EncLM([MASK], (ehead , etail, d1))
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Figure IV.1: Overview of PromptORE.
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estimated by methods described in section IV.3.2. As shown in figure IV.1, PromptORE is
composed of two main modules, similarly to [197, 198]:

1. Relation Encoder. It computes a vector representation of the relation expressed in the
current instance.

2. Relation Clustering. It clusters the relation embeddings of the whole dataset to identify
groups of relation instances expected to express the same relation type 𝕣.

IV.3.1 Relation Encoder

This module aims to compute a vector representation (or relation embedding) of the relation
expressed between 𝒆ℎ𝑒𝑎𝑑 and 𝒆𝑡𝑎𝑖𝑙 in the current sentence 𝒅. We want this relation embedding
to be representative of the underlying relation type: if the relation embeddings of two instances
are close (relative to a specific distance metric), these instances convey, most probably, the
same relation type. In other words, the relation encoder aims to abstract the notion of relation
instance to provide embeddings that are easier to compare.

In recent papers [22, 113, 197, 198, 228, 251, 255], relation embeddings are computed using
EncLM such as BERT [6, 15] or RoBERTa [256]. BERT (and other EncLMs) takes some
tokenized text as input and computes an embedding for each input token, which is representative
of the token itself and its context of use. BERT also includes a Masked Language-Model
(MLM) head, which allows it to predict the most probable tokens associated with an embedding.
In addition to real word tokens (that can be a word, subword, or punctuation), BERT uses some
special virtual tokens:

• [CLS] and [SEP]. By convention, [CLS] needs to be inserted at the start of the text, and
[SEP] indicates the end of the text.

• [MASK]. It represents a token that is hidden/unknown, and BERT will try to compute a
satisfactory embedding. Then, using the MLM head, BERT can predict the most probable
tokens. Thanks to this [MASK] token, BERT can auto-complete sentences.

We define 𝒉 = EncLM([MASK],P) as the EncLM embedding of the [MASK] token in the
context of P . P is a text that must contain one [MASK] token.

Previous works [22, 113, 197, 198, 228, 251, 255] use an entity-pair representation paradigm
to compute relation embeddings. A vector representation for each entity is computed (using
special markups or virtual tokens, aggregation, attention, ...), and the two representations are
aggregated (concatenated or merged). Computing these entity-pair representations requires a
specially fine-tuned EncLM. Indeed, the concatenation of the raw EncLM embeddings of the
two entities is not guaranteed to produce embeddings characteristic of the underlying relation
type. This property comes after fine-tuning the EncLM specifically for that task (either in a
fully supervised setting or with secondary supervision signals [196, 197]). We believe that
most of the hyperparameter-tuning problem comes specifically from this step. Therefore, we
opt for another method to generate relation embeddings: prompt-tuning.
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Prompt-Tuning The idea behind prompt-tuning is to benefit from EncLM’s abilities to predict
masked tokens. It is already used in few-shot RE by [229, 230, 231, 232]. It can be summarized
as follows:

1. Design a prompt PR, which is a sequence of tokens that includes one [MASK] token. For
instance, Lv et al. [229] use the template PR(𝒆ℎ𝑒𝑎𝑑 , 𝒆𝑡𝑎𝑖𝑙 , 𝒅) = “{𝒅} In this sentence,

{𝒆ℎ𝑒𝑎𝑑} is the [MASK] of {𝒆𝑡𝑎𝑖𝑙}.”.

2. Identify a set of label tokens T that represents each relation type. Label tokens are
generally real words chosen because of their semantic similarity with the relation type
[232]. They can also be learned virtual tokens [230, 231]. In that case, they are very
close to prototypes in prototypical networks.

3. Predict the [MASK] embedding in the context of PR using the EncLM:

𝒉 = EncLM([MASK],PR). (IV.1)

4. With this embedding, compute the probability to predict each label token 𝑡 ∈ T thanks to
the MLM head of the EncLM.

5. Select the relation type represented by the label token 𝑡 with the highest probability.

In itself, prompt-tuning does not require fine-tuning the EncLM but necessitates designing
an optimal prompt PR and a set of label tokens T . The two are usually adjusted using a labeled
dataset and cannot be applied directly to our unsupervised relation encoder.

Unsupervised Prompt-based Relation Encoder For our relation encoder, we propose
simplifying the general principles of prompt-tuning to work unsupervised. In practice, our
solution is also significantly related to prompting (which has gained significant appeal with the
rise of LLMs [257]). We propose removing the set of label tokens T and using the simplest
prompt PR possible. Our proposed prompt template is as follows:

PR(𝒆ℎ𝑒𝑎𝑑 , 𝒆𝑡𝑎𝑖𝑙 , 𝒅) = “{𝒅} {𝒆ℎ𝑒𝑎𝑑} [MASK] {𝒆𝑡𝑎𝑖𝑙}.” (IV.2)

with {·} variable substitution ({𝒅} is replaced by the text of 𝒅), 𝒅 the instance text, 𝒆ℎ𝑒𝑎𝑑
(resp. 𝒆𝑡𝑎𝑖𝑙) the text of the head (resp. tail) entity. We have removed the [MASK] and [SEP]

tokens from our equations for simplification purposes, but they are, of course, inputted to BERT
at their correct locations. For instance:

𝒅 = “Queen Elizabeth II was married to Prince Philip.”,
𝒆ℎ𝑒𝑎𝑑 = “Queen Elizabeth II”,
𝒆𝑡𝑎𝑖𝑙 = “Prince Philip”,

PR(𝒆ℎ𝑒𝑎𝑑 , 𝒆𝑡𝑎𝑖𝑙 , 𝒅) = “Queen Elizabeth II was married to Prince Philip. Queen Elizabeth II
[MASK] Prince Philip.”.

As we remove T , we use the [MASK] embedding as our relation embedding. Thus, the
relation encoder process is the following (as shown in figure IV.1):
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1. Apply the template defined in equation (IV.2) to generate a prompt for the current instance.

2. Predict the embedding of the [MASK] token with the EncLM and use it as our relation
embedding:

fRE(𝒆ℎ𝑒𝑎𝑑 , 𝒆𝑡𝑎𝑖𝑙 , 𝒅) = EncLM([MASK],PR(𝒆ℎ𝑒𝑎𝑑 , 𝒆𝑡𝑎𝑖𝑙 , 𝒅)). (IV.3)

Alternative Prompts If we analyze PR, we can see that the EncLM will likely fill the [MASK]
token with a verb, as it is trained to produce grammatically correct sentences. It raises questions:
can all relations be expressed with a verb and a single word? We did an analysis on the 9,892
Wikidata relation types with surface forms:

• More than 75 % of relation types need two words or more to be expressed. For instance,
acceptable surface forms for birthplace are “born in” or “the birthplace of”.

• Surface forms usually contain a root word (noun, verb) and tool words. 92 % of the root
words are nouns3, and only 6.7 % verbs. The most common tool words are of, in, by, the,
a, to.

Therefore, it is interesting to consider alternative prompts encouraging the EncLM to predict
a noun (Lv et al. [229] also focuses on noun prediction). In addition, Lv et al. [229] introduce a
prefix to their prompt: “In this sentence”. Therefore, we define alternative prompt templates
aiming at predicting nouns and with various prefixes:

P ′1R (𝒅, 𝒆ℎ𝑒𝑎𝑑 , 𝒆𝑡𝑎𝑖𝑙) = “{𝒅} {𝒆ℎ𝑒𝑎𝑑} is the [MASK] of {𝒆𝑡𝑎𝑖𝑙}.”
P ′2R (𝒅, 𝒆ℎ𝑒𝑎𝑑 , 𝒆𝑡𝑎𝑖𝑙) = “{𝒅} In this sentence, {𝒆ℎ𝑒𝑎𝑑} is the [MASK] of {𝒆𝑡𝑎𝑖𝑙}.”
P ′3R (𝒅, 𝒆ℎ𝑒𝑎𝑑 , 𝒆𝑡𝑎𝑖𝑙) = “{𝒅} We deduce that {𝒆ℎ𝑒𝑎𝑑} is the [MASK] of {𝒆𝑡𝑎𝑖𝑙}.”

P ′2R is the same as Lv et al. [229]. In our true unsupervised setting, we cannot choose the
optimal prompt from the previous ones nor use automatic methods to generate prompts (such
as [241]) as they require access to labeled data. Therefore, the main results of PromptORE
are computed using PR, the most straightforward prompt of all. In a secondary phase, we will
analyze PromptORE’s performances with these alternative prompts.

IV.3.2 Relation Clustering

Similarly to previous unsupervised and few-shot RE models, we measure the similarity between
two EncLM embeddings using the Euclidian distance4 [197, 198, 249]. We then cluster the
relation embeddings computed on the entire dataset D to find groups of relation instances that
are close, and we expect these clusters to be suitable candidate relation types.

3In practice, they are often used with the verb “be” (e.g., “is the birthplace of”).
4Strictly speaking, the cosine similarity is generally preferred to compare embeddings, but clustering algorithms

are often designed with the Euclidian distance in mind.
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K-Means Clustering If we know the number of relation types 𝑘 in advance, we propose
using a simple k-means clustering [258, 259].

Clustering without 𝑘 The most general case, however, is that we do not know 𝑘 . To tackle
this problem, we can take two points of view: use clustering models that do not require a
predefined number of clusters or estimate 𝑘 automatically and use it with regular clustering
algorithms.

For the first point of view, multiple models are available, the main ones being Agglomerative
Clustering (HAC) [260], DBSCAN [261], OPTICS [262], Infinite Gaussian Mixture Model
(IGMM) [263], or Affinity Propagation [264]. Nevertheless, most cannot be applied in our
case: HAC, DBSCAN, or IGMM need other hyperparameters (such as density), and Affinity
Propagation does not scale well to big datasets. Therefore, we propose to use OPTICS.

As a second alternative, we propose implementing the elbow rule [265] to estimate the
number of clusters. The idea of the elbow rule is to select an upper bound 𝐾 to the number of
clusters and compute a clustering (e.g., k-means clustering) for each 𝑘, 2 ≤ 𝑘 ≤ 𝐾. For each
clustering, we measure its quality using an internal metric (not relying on external data, such
as labels we do not have) that analyzes the geometric structure of the proposed partitioning.
Widely used internal metrics for the elbow rule are the silhouette coefficient [266], the distortion
score (sum of the squared distance between the points and their cluster centroids), or the
Calinski-Harabasz score [267]. Intuitively, we expect that increasing the number of clusters
will improve the value of these internal metrics since there are more parameters to explain the
data. However, when we have more clusters than the actual number of relation types, these
scores will most likely grow more slowly as we can only subdivide actual relation types. We
thus anticipate an inflection point in the internal metric curve. The elbow rule aims to find this
inflection point, the “elbow” in the curve: the optimal trade-off between a reasonable number
of clusters and a high silhouette coefficient. The elbow location is generally found visually, but
automatic methods are also available [268, 269], although less precise than the human eye.

IV.4 Experimental Setup

IV.4.1 Datasets

To evaluate PromptORE, we exploit labeled datasets, which are only used during evaluation.
As we have said in section III.3, we are only interested in sentence-level RE, which is already
very challenging for unsupervised models. It explains why we omitted the Linked-DocRED
dataset we created in chapter III.

The first dataset we choose is FewRel [210]5. This dataset comprises text from Wikipedia
pages that have been automatically annotated by aligning the text with Wikidata triples (distant-
supervision setting), then manually checked for each instance. As we evaluate unsupervised RE,
there is no need for training data, so we merge the training and development split together and
evaluate PromptORE and the baselines on them. FewRel contains 80 relation types, with 700

5Available at https://github.com/thunlp/FewRel.
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IV.4 Experimental Setup

instances each (20 other relations are available in the test set, which is kept private). Therefore,
the dataset is composed of 56,000 instances. Finally, FewRel is not multilabel: it contains, at
most, one relation for each pair of entities.

FewRel is a general domain dataset, but we also want to evaluate PromptORE on more
specific domains. Our second dataset is FewRel NYT [206]. This time, the sentences are taken
from newspaper articles in the New York Times. It is also automatically annotated and manually
checked using Wikidata. FewRel NYT contains 25 different relation types, with 100 instances
each.

Our third dataset is FewRel PubMed [206]. Texts come from PubMed, a database of
biomedical literature. It is also automatically annotated (this time with the UMLS knowledge
base) and manually checked. It comprises 10 relation types, with 100 instances each.

IV.4.2 Metrics

Traditional classification metrics such as accuracy, precision, recall, or F1 score cannot be used
to evaluate and compare PromptORE’s performances. There is no direct link between our
cluster IDs and the relation types. Therefore, we use the metrics presented in section III.5.6,
namely, B3, V-measure, and the Adjusted Rand Index (ARI). We choose the ARI over the
Adjusted Mutual Information because the evaluated datasets have balanced class distributions.
These three metrics take complementary points of view: ARI is based on pairwise similarity
(enumerating all pairs of instances), B3 on one instance versus the dataset, and the V-measure
on clusters.

To analyze the experimental results precisely, let us recall some metrics properties. If a
model always predicts the most frequent class, V-measure, and ARI will equal 0. If a model
predicts a random distribution, ARI will be close to 0 because ARI is adjusted for chance.

IV.4.3 Baselines

We compare PromptORE with the state-of-the-art approach SelfORE [197], and two previous
approaches based on Variational Auto-Encoders, EType+ [252] and UIE-PCNN [223]).

SelfORE encodes instances with BERT and clusters these embeddings with an adaptive
clustering method to generate pseudo labels that are finally used to train a classifier. It is trained
self-supervised: the classifier generates new pseudo-labels to improve BERT embeddings.

UIE-PCNN encodes instances with a Piecewise Convolutional Neural Network (PCNN) [270]
and uses a Variational Auto-Encoder to classify instances in an unsupervised way. Additionally,
they propose two regularization losses, skewness and dispersion, to fight against the VAE’s
tendency to predict a single relation or a uniform distribution. Since UIE-PCNN relies on
PCNN, an older embedding method, we propose to replace it with a BERT model (similarly to
[252]), and we call this method UIE-BERT.

EType+ shows that using only entity types to encode instances provides better results than
UIE-PCNN. They propose a simple typing schema for the entities: Organization, Person,
Location, Miscellaneous. We expect the performances to be lower on domain-specific datasets
(FewRel NYT and FewRel PubMed) with more specific entity types.
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IV.4.4 Implementation Details

For PromptORE, we suppose we do not know 𝑘 , except in section IV.5.1. Besides, we
use the bert-base-uncased weights to initialize BERT. We also implement a model with
RoBERTa embeddings (using the roberta-base pre-trained parameter). We use the scikit-learn
implementation of OPTICS and k-means6. There are no hyperparameters to adjust.

For SelfORE, we use their publicly available implementation; for EType+ and UIE-PCNN,
we use the implementation of Tran et al. [252]. The baselines are trained knowing the correct
number of relations 𝑘 (i.e., 80 for FewRel, 25 for FewRel NYT, and 10 for FewRel PubMed).
All baselines are trained with the hyperparameter values determined by their authors.

IV.5 Results & Analysis

IV.5.1 Comparison With the Baselines

In this section only, to allow a fairer comparison with previous approaches, PromptORE knows
𝑘 , the number of different relations, and a k-means clustering is used. Table IV.1 shows the
results of the models on our three datasets. An informed reader may find the reported results of
SelfORE evaluated on FewRel in table IV.1 low compared to those shown in other publications
[51, 198, 201, 202, 271] (with an F1 B3 between 25 % – 30 % instead of 45 % – 55 %). However,
in these cases, SelfORE was evaluated on the development set of FewRel with only 16 relation
types and 11,200 instances [51, 201, 202, 228]; or a subset of 1,600 instances with 16 relation
types [198, 271]. We could reproduce their results using the same sampling procedure. We do
not use these settings in our evaluation, as it is an easier task than FewRel with its 80 different
relation types.

PromptORE consistently outperforms SelfORE, the previous state-of-the-art method, with
a gap of 19 % in B3, 18 % in V-measure and 19 % in ARI on FewRel. It represents a relative
gain in performance of more than 40 %. The performance gap is even more significant with
UIE-BERT, UIE-PCNN, and EType+. We observe similar conclusions with the two other
datasets.

Looking more closely, we notice that UIE-BERT [223] obtains abysmal results on all three
datasets: it always predicts the same relation. Strangely, Simon et al. [223] proposed two
regularization losses to avoid precisely this single-class prediction situation, but this problem
with UIE-PCNN and UIE-BERT was also observed by Yuan et al. [251] and Tran et al. [252].
We believe this is due to the hyperparameter that controls the balance between classification and
regularization losses, which needs to be explicitly fine-tuned for each dataset. This model is
symptomatic of the hyperparameter tuning problem of previously state-of-the-art unsupervised
RE: performances plummet when labeled validation data is unavailable.

Finally, we notice a very small difference in performance between BERT and RoBERTa
embeddings with PromptORE. In practice, both PLMs are well suited to provide precise results,
and we decide to use BERT embeddings for the following parts of this paper.

6Available at https://scikit-learn.org.
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Table IV.1: RE performances (in %) of PromptORE and previous state-of-the-art baselines on
three datasets. PromptORE (and the other baselines) know the number of relations 𝑘 . The best
B3 F1, V-measure F1, and ARI for each dataset is in bold.

Model
B3 V-measure

ARI
P R F1 Hom. Comp. F1

FewRel
UIE-PCNN 5.2 6.8 5.9 21.1 21.6 21.3 4.9
UIE-BERT 1.3 100 2.5 0 100 0 0

EType+ 7.5 8.0 13.7 33.3 79.1 47.9 8.4
SelfORE 24.4 36.3 29.2 50.4 56.6 53.2 24.4

PromptORE (RoBERTa) 47.8 47.9 47.9 71.2 72.5 71.8 43.7
PromptORE (BERT) 48.7 48.8 48.8 71.0 72.7 71.8 43.4

FewRel NYT
UIE-PCNN 7.3 27.1 11.5 9.6 15.8 11.9 3.0
UIE-BERT 4.0 100 7.8 0 100 0 0

EType+ 11.0 92.6 19.6 23.0 84.9 36.2 7.8
SelfORE 32.4 48.1 38.7 50.0 58.9 54.1 26.8

PromptORE (RoBERTa) 62.6 65.3 63.9 75.7 78.1 76.8 57.3
PromptORE (BERT) 63.7 66.6 65.1 76.5 79.5 78.0 56.9

FewRel PubMed
UIE-PCNN 14.4 45.2 21.9 10.3 19.2 13.5 7.2
UIE-BERT 10.0 100 18.2 0 100 0 0

EType+ 10.0 100 18.1 0 100 0 0
SelfORE 53.7 66.1 59.3 58.8 68.7 63.4 45.4

PromptORE (RoBERTa) 73.7 73.2 73.5 76.5 77.2 76.9 68.1
PromptORE (BERT) 77.6 77.2 77.4 81.0 81.2 81.1 73.8

67

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0111/these.pdf © [P-Y. Genest], [2024], INSA Lyon, tous droits réservés



IV PromptORE

Table IV.2: Comparison of the RE performances (in %) of PromptORE with different prompts
on three datasets. PromptORE is trained with the exact number of relations 𝑘 . The best B3 F1,
V-measure F1, and ARI for each dataset is in bold.

Dataset Prompt B3 F1 V-measure F1 ARI

FewRel

PR (PromptORE) 48.8 71.8 43.4
P∅R 33.8 57.4 28.8
P ′1R 48.9 71.7 44.5
P ′2R 49.4 72.4 46.3
P ′3R 50.5 73.0 47.7

FewRel NYT

PR (PromptORE) 65.1 78.0 56.9
P∅R 51.3 65.7 41.6
P ′1R 65.8 77.8 62.0
P ′2R 61.0 74.8 56.9
P ′3R 65.6 77.7 61.7

FewRel PubMed

PR (PromptORE) 77.4 81.1 73.8
P∅R 62.0 66.2 53.1
P ′1R 76.4 80.0 72.3
P ′2R 76.0 80.0 72.9
P ′3R 77.4 81.1 73.1

IV.5.2 Performance on Domain-Specific Datasets

BERT and, more broadly, EncLMs are usually pre-trained on general domain data (Wikipedia
and BooksCorpus [272] for BERT), and we can ask ourselves if that impacts performances on
out-of-domain datasets such as FewRel NYT and FewRel PubMed. We can see in table IV.1
that PromptORE does not see its results plummet. On the contrary, it still outperforms previous
SOTA models by a large margin. SelfORE, which also relies on BERT embeddings, does not
see its performance deteriorate, indicating BERT’s ability to provide precise embeddings even
on unseen domains7.

The results are generally higher than with FewRel, which is explained by the fact that the two
datasets contain fewer relation types and instances.

Finally, EType+ predicts a single class on FewRel PubMed because V-measure and ARI
touch zero. As we have stated earlier, it is explained by the entity type schema, which is very
limited as there are no person, organization, or location entities in this dataset.
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IV.5.3 Does PromptORE “Extract” Relations?

The core of PromptORE is the prompt PR used by the relation encoder to embed each instance.
However, one can ask if BERT really uses the text of the current instance to predict the
missing token (and thus extracts information from the sentence) or if it is only using its internal
knowledge, ignoring the current instance context. To answer this question, we propose to create
an empty prompt P∅R where we do not input the current instance text. Its template is defined as:

P∅R(𝒆ℎ𝑒𝑎𝑑 , 𝒆𝑡𝑎𝑖𝑙 , 𝒅) = “{𝒆ℎ𝑒𝑎𝑑} [MASK] {𝒆𝑡𝑎𝑖𝑙}.”. (IV.4)

It is equivalent to PR defined in equation (IV.2), except that we have removed 𝒅.
The results are shown in table IV.2. We can see that the performance for all three metrics and

three datasets are much lower with P∅R compared to PR, with an average gap of 15 % in B3,
14 % in V-measure and 15 % in ARI. BERT benefits from the instance context to more precisely
identify the relation type between the two entities.

Additionally, it is interesting to notice that even without the instance text, PromptORE still
surpasses SelfORE. This clearly indicates that the method proposed by SelfORE fails to take
full advantage of BERT embeddings. On the contrary, the simplicity of our approach allows
PromptORE to elicit more relational information from the internal representations of BERT.

IV.5.4 Alternative Prompts

As discussed in section IV.3.1, PR is not necessarily the best prompt, as more relations can
be expressed with a noun than a verb. We computed PromptORE performances with three
alternative prompts: P ′1R , which encourages BERT to predict a noun, P ′2R with the prefix
proposed by Lv et al. [229], and P ′3R containing a prefix variant of P ′2R . Results are shown in
table IV.2.

First, we notice that P ′1R provides better results than PR in ARI, but similar performances in
V-measure and B3 for FewRel and FewRel NYT. No improvement is observed with FewRel
PubMed. This result is interesting because we showed that fewer relations can be expressed
with a verb than a noun, so we expected a gap in favor of P ′1R . For example, FewRel relations
instance of, competition class, constellation, or operating system cannot be expressed with
a verb but are nonetheless correctly identified with PR. BERT is weakly impacted by the
apparent impossibility of predicting a meaningful and grammatically correct word in place of
the [MASK] token.

In table IV.2, P ′2R and P ′3R achieve higher performances than P ′1R in the majority of the cases,
while their only difference with P ′1R is the prefix (“In this sentence” or “We deduce that”). We
can also see the impact of the prompt’s wording: at first glance, both prefixes convey the same
idea, but their performances differ. In fact if we replace “deduce” by “conclude” in P ′3R we
obtain lower performances (not shown in table IV.2).

7As an aside, it has been observed than domain-specific fine-tuned EncLM models perform better on their
respective domains (e.g., drBERT [273] for the biomedical domain). We did not employ them as the other
baselines used domain-generic EncLM.

69

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0111/these.pdf © [P-Y. Genest], [2024], INSA Lyon, tous droits réservés



IV PromptORE

Table IV.3: Comparison of RE performances (in %) of PromptORE using different methods to
estimate 𝑘 . “Ideal” represents results when 𝑘 is provided (same results as table IV.1). The best
B3 F1, V-measure F1, and ARI for each dataset is in bold.

Dataset Method �̂� B3 F1 V-measure F1 ARI

FewRel
Ideal 80 48.8 71.8 43.4
OPTICS 571 10.8 8.5 0
Elbow 65 49.5 71.2 42.2

FewRel NYT
Ideal 25 65.1 78.0 56.9
OPTICS 35 33.2 29.3 1.7
Elbow 26 64.1 77.4 56.2

FewRel PubMed
Ideal 10 77.4 81.1 73.8
OPTICS 12 26.8 11.2 0.3
Elbow 10 77.4 81.1 73.8

Finally, there is no consensus on the best prompt from the four proposed ones: P ′3R is the best
for FewRel, P ′2R for FewRel NYT and PR for FewRel PubMed. This highlights the importance
of selecting and fine-tuning prompts to maximize BERT’s performances, which is indeed a
significant research area for prompt-based methods [229, 241, 274, 275]. Under our fully
unsupervised setting’s goal, it is unfeasible to fine-tune the prompt due to the lack of labeled
data. Therefore, we keep our original PR to ensure fair results.

IV.5.5 Clustering Without Knowing 𝑘
Up to now, PromptORE knows the number of relation types, 𝑘 . However, as said in section IV.3.2,
the most general setting is when we do not know 𝑘 . We identified two methods to cluster our
data without 𝑘:

1. OPTICS, a clustering algorithm based on density;

2. the elbow rule (to calculate �̂� an estimation of 𝑘) with k-means clustering.

The results are shown in table IV.3. For the elbow rule, we first calculate multiple clusterings
by varying the number of clusters. For each of these clusters, we compute the silhouette
coefficient. We obtain the blue scatter plot of the figure IV.2 for FewRel. As this plot is
rough, we approximate it thanks to a ridge regression with a Gaussian kernel (orange curve in
figure IV.2). In a normal case, we should visually find the location of the elbow. However, the
curve of figure IV.2 has a sharp elbow that is close to the curve’s maximum. Thus, we propose
to select �̂� to correspond to the maximum of the silhouette score. As a side note, we noticed the
same curve shape with a maximum for FewRel NYT and FewRel PubMed, so we applied the
same principle.

We detect the elbow at �̂� = 65 clusters for FewRel. We obtain �̂� = 26 for FewRel NYT and
�̂� = 10 for FewRel PubMed, that is, values of �̂� nearly identical to the real number of relations.
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Figure IV.2: Silhouette curve computed to estimate the number of clusters �̂� with the elbow rule.
Due to the roughness of the curve, it was approximated using a ridge regression with a Gaussian
kernel. The estimation of the number of relation types is at the curve’s maximum (�̂� = 65).

Quantitative Results OPTICS sets �̂� at 571 (see table IV.3), far from the optimal 𝑘 = 80 for
FewRel. It translates into poor performances compared to PromptORE when we know 𝑘 . We
also note that OPTICS is very slow during training (approximately 6 h compared to 5 min with
k-means). On the other side, results are much more satisfactory with the elbow rule, with a
slight decrease in ARI but equivalent performances in B3 and V-measure. Training time is also
much more reasonable with approximately 1 h. We make the same conclusion when we look at
FewRel NYT and FewRel PubMed.

We can conclude that, at least on our three datasets, the Elbow Rule efficiently finds a correct
estimation of 𝑘 . Finally, it is interesting to see that PromptORE with the elbow rule widely
surpasses previous state-of-the-art approaches (see table IV.1), with a gap of 15 % – 25 % in
B3 and V-measure and 17 % – 30 % in ARI. We demonstrate that it is possible to remove the
dependency on all hyperparameters, including 𝑘 , and still achieve state-of-the-art results.

Qualitative Analysis of the Clustering From table IV.3, the elbow rule finds �̂� = 65 instead
of 80 for FewRel. This means the clustering is not ideal: some clusters must contain multiple
relation types. The confusion matrix between the true relation types and the clusters predicted by
PromptORE is shown in figure IV.3. It is evidently not square as the number of clusters �̂� does
not equal the number of relations 𝑘 . We reorganized the axes to find a logical representation of
the confusion matrix, as initially, there was no link between the cluster IDs and the relation
types. To do that, we employ a method similar to the algorithm described in appendix A.

On this confusion matrix, we notice that some clusters are not pure: they contain multiple
relations (e.g., clusters 11, 19, 29-32, 50, or 55). The main observation is, nevertheless, that the
matrix possesses a clear diagonal, meaning that PromptORE effectively distinguishes the vast
majority of the relation types while training in a fully unsupervised setting.

We also see that clusters seem relatively complete: seldom do clusters share the same
relations (except for clusters 32 and 42 or 40, 50, and 55).
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Table IV.4: Relation types composing four randomly sampled impure clusters predicted by
PromptORE tested on FewRel with the elbow rule. Relation types are displayed in descending
proportion order.

Cluster Relation Types

11
47 % language of film or TV show
40 % language of work or name
7 % country of origin
6 % other

19

48 % mountain range
27 % located in physical feature
15 % located in or next to body of water
4 % located in the administrative territorial entity
6 % other

32

27 % screenwriter
27 % director
20 % after a work by
13 % characters
9 % composer
4 % other

50

25 % sibling
21 % father
19 % child
18 % mother
17 % spouse
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Figure IV.3: Confusion matrix of PromptORE tested on FewRel when �̂� is estimated with
the elbow rule. Columns and rows were reordered using a method similar to the algorithm
described in appendix A (as there is no direct link between the cluster IDs and the relation
types). The main relation types of some clusters are highlighted.

As some clusters contain multiple relation types, we find it interesting to check whether the
types that compose each cluster are semantically linked. We randomly sample four clusters that
contain multiple relation types. Results are shown in table IV.4. For these four clusters, we can
see that the types are indeed semantically close within a cluster:

• for cluster 11, they are linked to the language of an artistic work (country of origin is
related to the language);

• for cluster 19, to geographical location;

• for cluster 32, to artistic creation;

• for cluster 50, to family relationship.

Even though these clusters are not optimal from the FewRel annotation point of view, they
are semantically coherent. We could even argue that cluster 11 makes more sense than the
initial labeling, which divided this cluster into relation types with generic types (language of
work or name) and a relation type specific to cinema and movies (language of film or TV show).

In conclusion, this qualitative analysis shows that combining PromptORE with the elbow
rule efficiently discovers semantically consistent clusters, which are very close to true relations.
This result in itself is very impressive: without any prior knowledge about the relation types
(name, description, or even number), PromptORE identifies most of them precisely and, in any
case, finds a coherent typing scheme. Finally, the scheme proposed by PromptORE and its
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Table IV.5: Most frequent predicted tokens for three clusters identified by PromptORE with
the elbow rule for FewRel. The relation types composing these clusters are also displayed in
descending proportion order.

Cluster Predicted token Relation types

3
, 99 % platform
for 1 % other
supports

15

: 79 % contains administrative territory
borders 5 % located in administrative entity
, 3 % located in physical feature
surrounds 7 % other

50

, 25 % sibling
. 21 % father
married 19 % child

18 % mother
17 % spouse

clear diagonal is all the more stunning given the high number of classes (80), which renders
this classification non-trivial. In our opinion, it demonstrates the quality and value of using
EncLM prompting with clustering to classify relation types in an unsupervised setting. We
believe this technique can also be applied to other information extraction tasks (see chapter V).

IV.5.6 Analysis of PR Prompt Predictions

In section IV.5.4, we found a very little performance difference between PR and P ′1R , while
the majority of relations cannot be written using a verb. To go further, it would be interesting
to check which tokens/verbs best describe the clusters identified by PromptORE with PR. To
do that, we use the relation embeddings (computed by our relation encoder) and predict the
masked tokens (represented by [MASK]) with the MLM head of BERT. By iterating for every
instance located in one cluster, we can find the most frequent tokens that describe it. We apply
this method on the clusters identified by PromptORE and elbow rule (see figure IV.3). The
results on three selected clusters are displayed in table IV.5.

In most cases, the predicted names are not clear enough to qualify the relation type
corresponding to the cluster. Nevertheless, the names give clues to identify the general theme of
the relation type (“married” indicates a family-centered relation type, “borders”, and “surrounds”
a geographic topic).

The table IV.5 also shows the major limitation of PR: when we look at cluster 50, spouse is
represented by “married”, but sibling, father, child, and mother relation types are not brought
to light with the predicted names. Indeed, these four types cannot be written using a single
verb; by not finding satisfactory names, BERT defaulted to predicting punctuation tokens. We
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reach the same conclusion for cluster 15, where BERT predicts punctuation tokens.
Finally, this observation gives us interesting insights about the behavior of our relation

encoder. Intuitively, we could think that PromptORE would have poor results with relation
types that cannot be written using a verb. On the contrary, we found that results were close
between PR and P ′1R (see table IV.2). At the same time, we notice that cluster 3 (table IV.5) is
very pure, yet its most predicted name is “,”, a token that is furthermore shared among the two
other clusters of table IV.5. This indicates that BERT can encode a very expressive embedding
of the current relation instance that allows precise clustering but cannot be translated into real
words. This is supported by the fact that PromptORE identifies three different clusters with
punctuation as their most frequent tokens (table IV.5). It is reassuring to see that complex
prompts are not required to represent many relation types effectively. It does not undermine the
importance of prompt-tuning (when possible): they impact model performances as shown in
table IV.2.

IV.6 Conclusion
In this chapter, we introduced PromptORE, our unsupervised RE model. The primary motivation
of PromptORE is the weakness of previous state-of-the-art models, which heavily rely on
hyperparameters, in particular, to prevent overfitting. Their respective authors do not explain
how to adjust them without using an annotated validation dataset, which is incompatible with
the unsupervised scenario. To solve this shortcoming, our proposed approach leverages and
adapts the prompt-tuning paradigm to work under an unsupervised setting. This allows us
to create a flexible relation typing model that does not require training or fine-tuning, thus
removing nearly all hyperparameters. We also employ a simple heuristic to estimate the number
of relation types.

Experiments on one general and two domain-specific datasets show that PromptORE widely
surpasses previous state-of-the-art methods (with a gap of 18 % – 19 % in B3, V-measure, and
ARI) while being simpler and not needing any hyperparameter tuning. The qualitative analysis
of the confusion matrices demonstrates that PromptORE identifies most relation types without
prior knowledge and provides a semantically coherent typing scheme. The results are auspicious,
given the relatively high number of classes in FewRel (80), showing that PromptORE can
identify precisely various relation types.

Finally, PromptORE is an experimental validation of the feasibility of realistic low-resource
(unsupervised) and open-world relation extraction. The next logical step is to adapt and enhance
the PromptORE method to the second primary task of information extraction: named entity
recognition.
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V CITRUN
Cross-Domain Transfer-Learning for Unsupervised Named Entity

Recognition

Unsupervised and zero-shot Named Entity Recognition (NER) aims to extract and classify
entities in documents from a target domain D𝑇 without annotated data, a very low-resource
setting. While zero-shot NER approaches yield impressive outcomes, they operate under the
assumption that all entity types found in D𝑇 are predefined and known (closed-world hypothesis).
Unsupervised NER tackles this limitation, but existing models suffer from the same reliance
on hyperparameters as unsupervised RE baselines (chapter IV), making them unusable in a
real-world scenario.

To address these shortcomings, we introduce CITRUN. This unsupervised NER model does
not need annotations in D𝑇 (in particular to adjust hyperparameters) and does not require
knowledge of the target entity types or their number. To do that, we extend the typing approach
developed with PromptORE (described in chapter IV) for the NER task and use it to structure
the extracted entities in entity types. We also propose to use contrastive learning to refine entity
embeddings and elicit entity types more precisely. Results on 13 domain-specific datasets show
that CITRUN significantly outperforms unsupervised LLM prompting and is competitive with
the latest zero-shot models. Qualitative analysis shows that CITRUN effectively groups entities
into semantically meaningful clusters resembling the true entity types.

The source code of CITRUN and the unsupervised baselines is available in a public repository1

and distributed under an open-source license.
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V.1 Introduction

Named Entity Recognition (NER) is a fundamental NLP task that aims to identify entities in text
and classify them into entity types. It is the logical next step after the success of PromptORE
with unsupervised RE. The main objective of this chapter is to transfer and improve the results
of PromptORE on the NER task.

Similarly to RE, NER has primarily been approached as a supervised task [39, 113], which
presents challenges in specific domains (e.g., scientific, biomedical) where large labeled corpora
may not be readily available. As a consequence, interest in low-resource and few-shot NER
has risen [116, 276, 277], especially since the emergence of Encoder-Only Language Models
(EncLM) such as BERT [6]. However, these approaches still require annotation.

Zero-shot NER aims to alleviate this constraint. Recent models typically transfer knowledge
from a source domain D𝑆 to a target domain D𝑇 where no annotated data is available [31, 37].
Although they do not require labels in D𝑇 , they assume a closed-world hypothesis, where entity
types are known in advance, making them inapplicable in exploratory scenarios or novelty
detection use cases. To solve this shortcoming, tentatives for unsupervised NER have been
proposed. However, they suffer from the same weakness highlighted with PromptORE: a heavy
reliance on hyperparameters that cannot be adjusted without labeled data.

Therefore, we introduce CITRUN, our “Cross-DomaIn TRansfer-Learning for Unsupervised
Named Entity Recognition” model. CITRUN follows a strict unsupervised setting: no labeled
data in D𝑇 , no knowledge of the entity types E𝑇 (including their number), and no hyperparameter
tuning dependant on labeled data from D𝑇 .

To do that, we adapt the methodology developed with PromptORE to unsupervised NER for
the typing part and extend it in several aspects. We propose to use annotated data from a source
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domain D𝑆 to train CITRUN and transfer it to the target domain D𝑇
2, envisioning that CITRUN

will learn generalizable patterns from D𝑆 that apply to D𝑇 . We include mention detection in the
spectrum of CITRUN, whereas PromptORE previously ignored the relation detection part. For
entity typing, we propose a novel embedding refinement approach based on contrastive learning
to isolate entity types more effectively in D𝑇 . Additionally, we rework the cluster estimation
algorithm to make its computation more effective. To summarize our main contributions:

• We propose CITRUN, an unsupervised NER model that extracts and classifies entities
from a target domain D𝑇 without annotations in D𝑇 , without knowing the target entity
types E𝑇 , nor their number |E𝑇 | (section V.3). We generalize PromptORE’s prompting
and clustering approach to classify entities into entity types (section V.3.2).

• We extend PromptORE to use contrastive learning to elicit entity types more precisely
and propose a logarithmic complexity class algorithm to estimate the number of clusters
(section V.3.2.3).

• Experimental results on 13 domain-specific datasets show that CITRUN surpasses LLM-
based unsupervised NER and performs comparably to the more supervised zero-shot
and few-shot state-of-the-art models (section V.5). Qualitative analysis highlights that
CITRUN organizes entities in semantically coherent clusters close to true entity types
(section V.5.8).

V.2 Related Work

V.2.1 Few-Shot & Zero-Shot Named Entity Recognition
Most of the few-shot and zero-shot models assume the availability of labeled data in a source
domain D𝑆 and try to learn from D𝑆 and transfer to D𝑇 . D𝑆 can be a manually annotated
dataset [23, 277], a distantly labeled dataset [278], or a synthetically generated dataset [31, 66,
124]. Recent approaches are divided into two families: 1. two-stage NER, and 2. one-stage or
integrated NER.

Two-stage approaches split NER into Mention Detection (MD) and Entity Typing (ET) [277,
279, 280]. MD aims to identify spans of 𝒅 that are entity mentions, and ET classifies the type
of each extracted mention. Integrated models combine MD and ET in one step, the motivation
being to reduce cascading errors [23, 31, 278, 281, 282]. In practice, both paradigms attain
state-of-the-art results [277, 281]. Until recently, most approaches relied on EncLMs. We see
now the rising use of Large Language Models (LLM) in these two low-resource settings [23,
31], where LLMs particularly shine [155].

Mention Detection (MD) Few-shot and zero-shot approaches follow architectures similar
to supervised models for MD. They usually implement span-based extractors [66, 116, 283],
although BIO sequence labeling is still used [277, 280]. These extractors are trained in a

2D𝑆 that is different from D𝑇 . For instance, the source domain can be a news dataset (such as CoNLL-2003
[39]), and the target domain a biomedical dataset (e.g., i2b2 [209]).
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supervised fashion on D𝑆 entities. The challenge involves transferring the learned patterns from
D𝑆 to D𝑇 mentions. BIO sequence labeling classifies each token 𝑡 in 𝒅 as either B (first token
of a mention), I (second or following token of a mention), or O (not a mention). A decoding
algorithm then reconstructs the boundaries of the mention using the predicted classes. Greedy
algorithms are used, especially with recent language models [277]. Conditional random fields
[284] are extensively employed to improve decoding. The main weakness of BIO is that it
cannot predict nested entities. This is the main motivation for span-based extractors.

In general, span-based extractors score each possible span in 𝒅 and determine the true
entity mentions [113, 116]. To do that, they compute start of span and end of span vector
representations (usually embeddings of the first and last tokens of the candidate span). Zhong
et al. [113] concatenate the start and end embeddings and use them in a perceptron that scores
the candidate span. Wang et al. [116] use bilinear layers to replace the perceptron, allowing
more efficient computations compared to Zhong et al. [113]. Span-based approaches suffer
from the quadratic number of possible spans, making scoring the candidate spans expensive
for long documents. Dobrovolskii [58] tries to overcome this problem with a hybrid approach.
First, each word in 𝒅 is classified as an entity head or not. An entity head is the main word of
an entity; Dobrovolskii considers the head to be the root of the syntactic subtree of the mention.
This ingenuity allows him to lower the quadratic complexity to a linear complexity. Once the
entity heads are identified, the boundaries of each mention are determined using a convolutional
neural network. Finally, Zaratiana et al. [285] propose to adapt conditional random fields for
span-based extractors to enforce non-overlapping spans.

Entity Typing (ET) The general principle is to compute a vector representation of the
extracted entity mentions (entity embeddings) and compare them to those of the exemplars
(few-shot) or the target entity types (zero-shot and few-shot). Zhang et al. [279] propose to use
the k-nearest neighbors with the few-shot exemplars to identify the type. Prototypical networks
[237] are generally preferred to classify entities [116, 277, 283]. The entity-type prototypes are
computed using the exemplars.

Entity embeddings are computed by aggregating the EncLM embeddings of the individual
tokens composing the mention in the case of a BIO extractor [277] or by using the span
representation used by the span extractor [116]. Shen et al. [278] and Ding et al. [286] explore
prompting techniques with EncLM (using the [MASK] token) as an alternative to generate entity
embeddings.

Meta-learning [287] is employed to enhance the efficacy of transfer learning [280]. The idea
is to generate large amounts of few-shot episodes using the annotated data of D𝑆 (the set of
entity types of D𝑆); each episode contains a subset of E𝑆, randomly selected few-shot exemplars
associated to E𝑆, and test documents to compute the performance. Then, the model is trained
on the episodes to achieve the best transfer in the smallest fine-tuning steps possible (hence the
meta-learning term). This allows fine-tuning even on the limited few-shot exemplars, as the
model is adapted to converge quickly and reliably.

Finally, Liu et al. [276] and Mahapatra et al. [288] explore the effectiveness of adapting
EncLM embeddings to the target domain. They employ large amounts of unannotated documents
of D𝑇 and fine-tune BERT weights using a masked language modeling task. Empirically,
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they observe a link between a decrease in perplexity and an increase in NER performances.
Mahapatra et al. [288] decrease the training time required for domain adaptation by filtering
the unannotated documents of D𝑇 to keep those more aligned to the actual documents where
entities are to be extracted.

Large Language Models Very recently, Large Language Models (LLMs) [16, 289] have
been successfully applied to few-shot and zero-shot NER and have state-of-the-art results on
the zero-shot setting.

First, “raw” prompting obtains impressive results compared to previous works [146, 151,
257]. Wang et al. [146] and Ye et al. [257] requires few-shot exemplars to specify the output
format. Wei et al. [151] (ChatIE) propose a multi-turn framework that works in a zero-shot
setting (without the need for exemplars). Surprisingly, they reverse the usual MD and ET steps
order. Indeed, they first ask the LLM which entity types are present in the document (given
a predefined list of entity types). In subsequent turns, they ask the LLM about the entities
associated with each entity type. The weakness of their work is the multiple turns required to
analyze a document, which is expensive when using the APIs of the largest LLMs.

Sainz et al. [23], Zhou et al. [31], and Wang et al. [143] explore the idea of fine-tuning
small LLMs [16, 290, 291] on manually or synthetically labeled datasets. In doing so, they
create NER-specialized LLMs with better performances than generalist LLMs while being
much smaller. Zhou et al. [31] propose to annotate documents from the Pile corpus [159]
using GPT-3.5 (they call this dataset Pile-NER) and fine-tune Vicuna [290] on it. Their
UniNER model achieves better performances than GPT-3.5 in a zero-shot context. Additionally,
fine-tuning using a large amount of synthetic data allows them to specify a custom JSON format
that UniNER follows reliably. GoLLIE [23] uses Code-Llama [292] as its backbone and is
fine-tuned on manually labeled datasets from the news and biomedical domains. Sainz et al.
[23] follow a “Python class” scheme, where each entity type is specified as a Python class
with a name, a description, and a few examples. They find empirically that description and
exemplars metadata positively impact GoLLIE performances.

Regarding the prediction format, most of the approaches follow a surface form extraction
scheme [23, 31, 151, 257], except GPT-NER [146]. The models output only the mention
text, and a subsequent algorithm is required to localize the mention in the document. The
output format is generally JSON, but Sainz et al. [23] use Python code, allowing them to add
metadata elegantly in comments (description and exemplars). GPT-NER [146] proposes a
sequence labeling scheme. It asks the LLM to repeat the input document, with a special markup
delimiting the boundaries of mentions: @@ as the opening tag and ## as the closing tag. This
format removes the dependency on a decoding algorithm, as the detected mentions are localized
in the document by design. However, it is incompatible with a zero-shot setting, as in-context
exemplars are required to describe the output format.

Finally, Zaratiana et al. [66] (GliNER) fine-tune EncLM embeddings (DeBERTa v3 [293]) on
the GPT-3.5 generated annotations of Pile-NER [31]. They implement a span-based extractor
for MD coupled with a method similar to prototypical networks for ET. They obtain very
competitive results compared to the much larger fine-tuned LLMs UniNER [31] and GoLLIE

80

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0111/these.pdf © [P-Y. Genest], [2024], INSA Lyon, tous droits réservés



V.3 Description of CITRUN

[23]. Today, this model represents the best balance between the flexibility of LLM-based
zero-shot NER and the relatively small number of parameters of EncLM embeddings.

V.2.2 Unsupervised Named Entity Recognition

Historically, unsupervised NER implemented rules and patterns-based models [294, 295].
However, they were specific to a small set of entity types, hindering the discovery of unspecified
types. In fact, the most recent unsupervised NERs suffer from the same problem and require
prior knowledge of the target entity types [35, 37, 38, 296]. Formally, they are zero-shot models
and not completely unsupervised approaches.

Jia et al. [35], Peng et al. [37], and Liu et al. [296] propose to generalize the transfer-learning
from D𝑆 to D𝑇 setting used in the zero-shot setting. They train entity-type-specific models
based on BERT embeddings, which are merged together in a mixture of experts. They must
know the target entity types beforehand and need access to labels for each entity type (from
a different domain, but still annotations). CycleNER [38] proposes a seq-to-seq model with
a double translation mechanism between text and entities. It comprises two models: S2E
translating the document into its list of entities and E2S generating the text from a list of entities.
The two models are trained jointly, and S2E is kept for predictions. CycleNER also must know
the target entity types in advance and requires lists of entities from D𝑇 .

Only UNER [297] is compatible with an unsupervised scenario. UNER uses clustering for
MD and employs self-learning with auto-encoders for ET. UNER is subject to drifting (as it
relies on self-learning) and requires careful hyperparameter tuning (number of training steps,
learning rate, etc.) to prevent catastrophic performance drops. Unfortunately, UNER lacks a
detailed explanation of how these hyperparameters are adjusted unsupervised. As an aside, it
is interesting to notice that unsupervised NER models suffer from the same hyperparameter
tuning critique we emitted for unsupervised RE and the same use of unstable self-learning
paradigms that are particularly difficult to optimize.

V.3 Description of CITRUN
CITRUN aims to extract and type entity mentions from documents 𝒅 of D𝑇 in an unsupervised
setting. Given 𝒅, the objective is to identify the spans 𝒎 = [𝑡𝑖, ..., 𝑡 𝑗 ] ∈ 𝒅 that are entity
mentions, and classify the type 𝕖 ∈ E𝑇 for each 𝒎. CITRUN assumes no prior knowledge of
D𝑇 . It does not have access to:

• annotated documents of D𝑇 ,

• the set of entity types E𝑇 ,

• the number of entity types |E𝑇 |.

Similarly to recent zero-shot and few-shot models [31, 66, 278], CITRUN is built upon a
cross-domain transfer-learning scheme. The general idea is to learn the NER task on a source
domain D𝑆, where annotated data is available, and transfer it to D𝑇 . D𝑆 differs from D𝑇
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Figure V.1: Overall architecture of CITRUN.
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stylistically, semantically, and/or from the entity type perspective (E𝑆 ≠ E𝑇 ). We go beyond
zero-shot and few-shot approaches by not predefining E𝑇 .

As shown in figure V.1, CITRUN follows a two-step process, with:

1. Mention Detection (MD). It identifies the spans 𝒎 of 𝒅 that are entity mentions.

2. Entity Typing (ET). It classifies the type 𝕖 for each extracted mention. In practice,
CITRUN finds clusters of entities with the same type 𝕖.

V.3.1 Mention Detection (MD)
MD identifies entity mentions 𝒎 for a given document 𝒅.

As we have presented in the previous section, two main prediction paradigms exist for MD:
BIO sequence labeling extractors [66, 116, 283], and span-based extractors [277, 280]. In
general, span-based extractors achieve slightly better results than BIO models in supervised
and low-resource settings [66, 113]. We choose to formulate MD as a BIO sequence labeling,
classifying each 𝑡𝑖 ∈ 𝒅 as B (first token of an entity), I (second or following token of an entity),
or O (not an entity). We employ a BIO extractor due to its lower expressivity and complexity
than span-based models, expecting it to lead to better generalizability on unseen domains and
new entity types.

We employ EncLM embeddings, coming from pre-trained language models such as BERT
[6], combined with a linear classifier:

fMD(𝑡𝑖, 𝒅) = 𝜎(EncLM(𝑡𝑖, 𝒅)𝑾 + 𝒃), (V.1)

where 𝑾 and 𝒃 are learned weights, EncLM(𝑡𝑖, 𝒅) is the EncLM embedding of 𝑡𝑖 in the context
of 𝒅, and 𝜎 is the softmax function. fMD is fine-tuned (EncLM weights, 𝑾 and 𝒃) on annotated
documents from D𝑆.

In fact, MD is the primary motivation for annotated data. On the one hand, we demonstrated
in the chapter IV the possibility of precisely typing relations without needing training data.
Thus, using the same principle for ET seems reasonable, eliminating the need for labeled
documents for this step. On the other hand, the only MD model that works unsupervised relies
on self-learning [297]. Yet, self-learning is known to be subject to drifting when overtrained.
Preventing drifting requires careful hyperparameter tuning (especially the number of training
steps and the learning rate). Luo et al. [297] do not explain how to adjust them without external
annotated 𝒅 from D𝑇 . As a result, we propose to use annotated documents from D𝑆 to train MD
in a supervised fashion (but cross-domain) to diminish the risk of unstable results. As a side
note, annotations for D𝑆 may come from manually labeled datasets, distantly annotated datasets
[278], or synthetically generated data [31]. In this chapter, we train CITRUN on manually
labeled and synthetically generated datasets (see section V.5.2).

V.3.2 Entity Typing (ET)
ET classifies the entities previously extracted with MD. In an unsupervised setting, the objective
is to group entities with the same entity type 𝕖 ∈ E𝑇 . As shown in figure V.1, ET comprises three
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modules. ET is the application of the principles of PromptORE for entity typing and contains
several improvements regarding the estimation of the number of clusters (section V.3.2.2) and
the use of D𝑆 to refine embeddings (section V.3.2.3).

V.3.2.1 Entity Encoder

The first module of ET is the entity encoder, which computes a vector representation (or entity
embedding) of the current entity. We want this embedding to represent the entity type: two
entity mentions 𝒎1 and 𝒎2 with close embeddings should have the same type 𝕖. Conversely,
two mentions with different 𝕖1 and 𝕖2 should have remote entity embeddings. To encode entities,
we use the same prompting with EncLM technique as PromptORE [33] (section IV.3.1). We
also choose the simplest prompt template possible:

PE (𝒎, 𝒅) = “{𝒅} {𝒎} is a [MASK].”. (V.2)

For instance:

𝒅 = “The primary effectors of Gβγ are various iron channels, such as GIRKs.”,
𝒎 = “Gβγ”,

PE (𝒎, 𝒅) = “The primary effectors of Gβγ are various iron channels, such as GIRKs. Gβγ is
a [MASK].”.

The entity representation is then computed as the embedding of [MASK] in the context of the
prompt PE (𝒎, 𝒅):

fET(𝒎, 𝒅) = EncLM([MASK],PE (𝒎, 𝒅)). (V.3)

V.3.2.2 Entity Clustering

The second module is the entity clustering. We follow a principle similar to the relation
clustering module of PromptORE (section IV.3.2). Once all entities extracted in D𝑇 are encoded
using the previous module, we cluster the embeddings to identify groups of entities that are
close, relative to the Euclidian distance, and thus expected to have the same type 𝕖 ∈ E𝑇 . We
use the simple k-means algorithm [258, 259]. Since the number of entity types is unknown, the
number of clusters must be estimated.

Improving PromptORE’s Elbow Rule With PromptORE, we employed the elbow rule
method with the silhouette coefficient. Although this method provides good estimations, it
has the drawback of being a visual approach. Automatic approaches have been proposed to
determine the elbow but are less precise than the human eye [268, 269]. In the tested datasets,
we could approximate the silhouette coefficient with a relatively smooth curve that had a clear
maximum close to the elbow, making the detection easy (by finding the extremum), but this is
not always the case. In particular, this is not true with CITRUN, which has a rough silhouette
curve, making the previous heuristic inapplicable.

To tackle this limitation, it is interesting to notice that k-means can be seen as a simplification
and approximation of a spherical Gaussian Mixture Model (GMM) [298]. The main difference
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resides in cluster membership: with k-means, each point belongs only to one cluster (Dirac
probability distribution), whereas GMM produces soft-clustering assignments. One approach to
estimate the number of clusters of a GMM is to fix an upper bound 𝐾 , compute a clustering for
each 𝑘, 2 ≤ 𝑘 ≤ 𝐾 , compute the Bayesian Information Criteria (BIC) [299] for each clustering
and select �̂� that minimizes BIC. The major advantage of this approach is that it does not require
to locate the elbow but rather a minimum, which is easier to find. This is because BIC measures
the quality of the clustering (similar to silhouette) and adjusts it relative to the complexity of the
model. Indeed, when looking at the right-hand side of equation (V.4), the left term measures
the quality of the fit, while the right part estimates the complexity of the model. We propose to
apply this same procedure to estimate the number of clusters with k-means, using the k-means
BIC formula of Onumanyi et al. [269]:

𝐵𝐼𝐶 = 𝑛 ln(𝑅𝑆𝑆
𝑛
) + 𝑘 ln(𝑛), (V.4)

𝑅𝑆𝑆 =
∑︁

0≤𝑖<𝑛
(fET(𝒎𝑖, 𝒅𝑖) − 𝒄𝑖)2, (V.5)

with 𝑛 the number of entity mentions 𝒎𝑖 extracted by MD, 𝒅𝑖 the document containing 𝒎𝑖

and 𝒄𝑖 the centroid of the cluster containing 𝒎𝑖. We call this procedure brute force cluster
estimation. This is the main approach we employ during CITRUN’s evaluation.

Reducing Computational Complexity One constraint of the previous approach is that it
requires to compute a clustering for each 2 ≤ 𝑘 ≤ 𝐾, which is computationally expensive.
Empirically, we find the BIC curve for ET to be smooth, globally convex, and with a single
minimum (see figure V.7). This was observed for the 13 D𝑇 datasets used during evaluation
(see section V.4.2), different EncLM embeddings, and every variation of CITRUN. With this
experimental observation, finding the global minimum BIC without testing every possible 𝑘
is possible. One such method is the ternary search. We propose implementing it and call it
ternary search cluster estimation. The ternary search follows an iterative approach, with each
cycle being:

1. In input, we have a lower bound 𝑘𝑚𝑖𝑛 and an upper bound 𝑘𝑚𝑎𝑥 for the number of clusters.

2. Select 𝑘1 and 𝑘2 such as they divide the search space between 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥 in thirds.

3. For 𝑘1 and 𝑘2, compute the clustering and calculate the BIC.

4. If 𝑘1 has a lower BIC than 𝑘2, then 𝑘𝑚𝑎𝑥 = 𝑘2, else 𝑘𝑚𝑖𝑛 = 𝑘1.

The cycle is repeated until 𝑘𝑚𝑎𝑥 = 𝑘𝑚𝑖𝑛. At each cycle, the search space is reduced by a third,
giving a logarithmic complexity of O(log3(𝐾) · k-means), compared to O(𝐾 · k-means) for
the brute force method.

In practice, three improvements can be made. First, if the lowest BIC is at 𝑘𝑚𝑖𝑛, we set
𝑘𝑚𝑎𝑥 = 𝑘1; and conversely, if the lowest BIC is 𝑘𝑚𝑎𝑥 , we set 𝑘𝑚𝑖𝑛 = 𝑘2. It allows the elimination
of two-thirds of the search space in one cycle.
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Secondly, we propose to remove the need to fix an upper bound 𝐾 by providing a first estimate
𝐾 =
√
𝑛 and allowing the ternary search to increase 𝐾 if the minimum BIC is located after it.

During the first cycle, if the lowest BIC is located at 𝑘𝑚𝑎𝑥 , instead of updating 𝑘𝑚𝑖𝑛, we set
𝑘𝑚𝑎𝑥 = 𝑘𝑚𝑎𝑥 + 𝑘𝑚𝑎𝑥−𝑘𝑚𝑖𝑛

3 . This move is possible for the following cycles until the lowest BIC is
not at 𝑘𝑚𝑎𝑥 .

Finally, the BIC curve is not completely smooth locally. To improve the minimum estimation
accuracy, when 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥 are close (e.g., 𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛 ≤ 5), we compute every clustering
for 𝑘𝑚𝑖𝑛 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥 and select �̂� with the lowest BIC.

V.3.2.3 Embedding Refinement (ER)

ET is not trained using labeled documents. However, since MD uses labeled data in D𝑇 , we can
also employ them for ET to isolate entity types more clearly during the clustering. Contrastive
learning has been applied for this purpose in the context of low-resource NER [281, 282]. The
objective is to bring entity mentions of the same type closer and move away entities of different
types by optimizing EncLM representations. Existing models apply contrastive learning on the
annotated data of D𝑇 , which we do not have. As a result, we propose optimizing the contrastive
loss on entity mentions of D𝑆, anticipating that the reorganized embedding space will also
benefit mentions in D𝑇 .

We implement the widely used triplet margin loss LTM [300]. LTM considers entity mentions
triplets (𝒎𝑎,𝒎+,𝒎−). 𝒎𝑎 is called the anchor. The positive mention 𝒎+ has the same type as
the anchor 𝒎𝑎, and the negative mention 𝒎− has a different type than 𝒎𝑎. The objective of
LTM is to ensure that 𝒎+ is closer to 𝒎𝑎 than 𝒎− up to a certain margin. We have:

LTM(𝒎𝑎,𝒎+,𝒎−) = max[0, d(𝒎𝑎,𝒎+) − d(𝒎𝑎,𝒎−) + 1] (V.6)

with d(𝒎𝑎,𝒎+) the Euclidian distance between fET(𝒎𝑎, 𝒅) and fET(𝒎+, 𝒅). fET weights are
fine-tuned on entities of D𝑆 using LTM. We fix the LTM margin at 1. Empirically, we have not
found that the margin significantly impacted the performances.

Contrary to usual EncLM fine-tuning, a larger batch size is beneficial with contrastive
learning [301], as it helps regularize the embedding space reorganization. The limiting factor to
increase the batch size with ET is entity encoding. For each triplet (𝒎𝑎,𝒎+,𝒎−), three prompts
PE need to be encoded. This comes with a substantial GPU footprint, hindering large batch
sizes. To mitigate this issue, we change the perspective and consider batches of entity mentions
instead of batches of triplets. Each mention 𝒎 is associated with the document 𝒅𝒎 ∈ D𝑆 in
which it appears and its type 𝕖𝒎 ∈ E𝑆. We encode one prompt for each entity. Then, we find all
valid triplets inside the batch, respecting the condition (𝕖𝒎+ = 𝕖𝒎𝑎) ∧ (𝕖𝒎− ≠ 𝕖𝒎𝑎). We can
encode 128 entities per batch in our experimental setup. Without this optimization, one batch
comprises 42 triplets, and LTM does not converge. With this optimization, one batch contains,
on average, more than 100,000 valid triplets.
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System Message: You are a helpful information extraction system.

Prompt: Given a passage, your task is to extract all entities and identify their entity
types. The output should be in a list of tuples of the following format: [(“entity 1”,
“type of entity 1”), ...].

Passage: {𝒅}

Figure V.2: Unsupervised prompt used by Zhou et al. [31] to annotate Pile-NER. It also
corresponds to the prompt of UniNER Uns (GPT-3.5).

V.4 Experimental Setup

V.4.1 Baselines

Luo et al. [297] did not release the source code of UNER, the only comparable unsupervised
baseline, and we could not reproduce their results. To solve this shortcoming, we propose an
evaluation focusing on two directions.

Few-Shot & Zero-Shot Baselines First, we compare CITRUN with state-of-the-art few-shot
and zero-shot NER models. These models are more supervised than CITRUN and thus expected
to achieve better results than us. However, they allow us to contextualize the performance of
unsupervised NER with more usual and standard low-resource approaches.

For few-shot models, we evaluate PromptNER [278] and MANNER [277] in a 10-shot
setting. MANNER implements a two-step approach with BIO extraction and prototypical
network-based entity typing. PromptNER uses prompt tuning with BERT. Support sets are
selected with the widely used method of Hou et al. [302].

Regarding zero-shot approaches, we include the current state-of-the-art LLM-based UniNER
[31], GoLLIE [23], and ChatIE (GPT-3.5) [151]. We also evaluate ChatIE with the open-weight
Llama 3 8B3: ChatIE (Llama 3). UniNER and GoLLIE are LLMs fine-tuned on synthetically
or manually labeled datasets, whereas ChatIE implements “raw” prompting. We also test
GliNER L [66] and GNER [139], which respectively use an EncLM (DeBERTav3 [293]) and a
full transformer (Flan-T5 [133, 134]), both fine-tuned on the same dataset as UniNER.

Unsupervised Baselines Creation As no unsupervised baseline is currently evaluable, we
propose creating two baselines based on LLMs.

First, Zhou et al. [31] annotated the Pile-NER dataset by prompting GPT-3.5 without
specifying entity types (see section 3.1 of their paper), thus in an unsupervised setting. They
never evaluated this approach, and we include it to provide reference values of unsupervised
GPT-3.5 prompting. We call this baseline UniNER Uns (GPT-3.5). The prompt they used is
displayed in figure V.2. Additionally, we tried to replace GPT-3.5 with Llama 3 8B, but this
smaller model could not respect the format specified in the prompt, resulting in null scores.

3Available at https://huggingface.co/meta-llama/Meta-Llama-3-8B.
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1. Type Elicitation Prompt

System Message: A virtual assistant answers questions from a user based on the
provided text.

Prompt: Given document: {𝒅}. Please answer: What types of entities are included
in this sentence? Answer with a JSON list like: [“entity type 1”, “entity type2”, ...].

2. Entity Extraction Prompt

System Message: A virtual assistant answers questions from a user based on the
provided text.

Prompt: According to the document above, please output the entities of type “{𝕖}”
in the form of a JSON list like: [“entity 1”, “entity 2”, ...].

Figure V.3: Unsupervised adaptation of the prompting method of ChatIE [151]. ChatIE follows
a multi-turn question-answering setup, with the first prompt employed to identify the entity
types mentioned in the current document and subsequent questions to identify mentions for
each elicitated entity type. This prompt is employed by ChatIE Uns (GPT 3.5) and ChatIE Uns
(Llama 3).

Second, the dual-stage method that ChatIE [151] implements, with type elicitation and entity
extraction, can be translated to work under an unsupervised setting. Initially, type elicitation
necessitates the list of entity types E𝑇 , but we can reformulate it to remove this dependency.
The prompts employed are displayed in figure V.3. We call this baseline ChatIE Uns (GPT-3.5).
We could successfully replace GPT-3.5 with Llama 3 8B, and we call this approach ChatIE
Uns (Llama 3). Finally, this baseline allows us to compare the performance between nearly
identical models (ChatIE and ChatIE Uns) and observe the impact of not specifying entity types
beforehand.

Can Zero-Shot Approaches Be Directly Translated to an Unsupervised Setting? The
zero-shot and unsupervised settings are very similar, not needing annotated data in D𝑇 ; the
only difference is specifying entity types beforehand (zero-shot) or automatically discovering
them (unsupervised). At first glance, the reader may think that zero-shot approaches can be
easily translated to unsupervision. But the truth is more complex.

Fine-tuned approaches (EncLMs [66], full transformers [139] or LLMs [31]) all require
the specification of an entity types schema, which is heavily employed during their training
procedure. For instance, Ding et al. [139] experimentally observed that negative sampling (i.e.,
specifying entity types not mentioned in the current document) is necessary to attain state-of-
the-art performances. Adapting these kinds of zero-shot approaches requires the redefinition of
the training procedure, a nontrivial process beyond the scope of baseline evaluation.

Prompting of frozen LLMs [28, 151] is easier to adapt, as it necessitates only adjusting the
prompt to remove the dependency on pre-specified entity types. That is precisely the models
we have implemented, with a single-stage approach (UniNER Uns) and a multi-turn method
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(ChatIE Uns).

V.4.2 Datasets

V.4.2.1 Target Domain D𝑇

Specific domains are the primary use cases of an unsupervised NER. We focus on datasets that
differ from D𝑆 stylistically (types of text), semantically (topics), and/or from the entity type
perspective (unseen entity types). As a result, we evaluate CITRUN on 13 domain-specific
datasets:

• five CrossNER datasets [276] (AI, Literature, Music, Politics, and Science). They cover
specific topics (scientific and literary) and unseen entity types.

• two MIT datasets [303] (Movie and Restaurant). They cover new styles of text (reviews
and search engine queries), specific topics, and unseen entity types.

• FabNER [304] with physics and chemistry articles labeled with scientific entity types.

• GENIA [305] and i2b2 [306] contain biomedical articles (taken from PubMed) annotated
with biomedical entities.

• GENTLE [307] and GUM [308] cover unusual styles of text: e.g., dictionary entries,
travel guides, legal notes, or poetry.

• WNUT 17 [309] comprises social network posts.

These datasets cover a wide spectrum of types of text (encyclopedic, scientific, biomedical,
social networks, customer reviews, dictionary entries, ...); domains (computer science, physics,
chemistry, natural science, biomedical, literature, music, ...); and entity types (algorithm,
protein, cell type, poem, mechanical property, animal, or political party among many others).
It allows us to have a detailed picture of the quality and generalizability of CITRUN.

V.4.2.2 Source Domain D𝑆

We propose to train CITRUN with two datasets: CoNLL-2003 [39], and Pile-NER [31]. They
represent two different ways to envision the unsupervised setting.

CoNLL represents the cross-domain perspective. It contains general-domain newspaper
articles manually annotated with four entity types (person, location, organization, and misc).
CoNLL is chosen to be distant from D𝑇 stylistically, semantically, and from the entity type
point of view. It allows us to evaluate the cross-domain capabilities of CITRUN.

Pile-NER represents the synthetic data perspective. It comprises 50,000 documents gathered
from the Pile corpus [159] automatically annotated by GPT-3.54, resulting in 13,000 fine-grained

4As an aside, it is interesting to notice that Gao et al. employed “real” documents from the Pile corpus instead of
generating them with GPT-3.5. They argue having diverse documents and wide coverage of domains with
LLM-generated documents is difficult, resulting in lower performance.
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entity types. The idea is that large and diverse D𝑇 datasets benefit the generalizability and
partially close the stylistic, semantic, or entity type gap between D𝑆 and D𝑇 . Nonetheless, as the
annotation process is automatic and does not involve human actions, it is not time-consuming or
expensive. In fact, the latest few-shot and zero-shot models use large amounts of automatically
annotated D𝑆 data (e.g., UniNER, GliNER L, and GNER train on Pile-NER), and the results
show the benefits of these automatically labeled corpora. Additionally, training CITRUN on
Pile-NER is a way to ensure a fairer comparison with these baselines.

V.4.3 Metrics

V.4.3.1 Mention Detection

We use the binary F1 score, precision, and recall as defined in section III.5.1. A prediction is
correct when the predicted boundaries are the same as those of a valid entity mention. Type is
ignored for mention detection.

We notice that some recent LLM-based approaches [23, 31, 151] have changed the boundary
check by a surface form check (i.e., checking that a predicted mention has the same text as
a true mention)5. This modification is less precise than an exact boundary check and can be
problematic when multiple mentions with the same surface form in the same document have
different types (e.g., “French persons speak French”). In our evaluation, we have evaluated all
baselines (and CITRUN) with the same boundary check metrics to ensure maximal fairness.

V.4.3.2 Entity Typing & End-to-End Named Entity Recognition

We cannot use the F1 score, as CITRUN predicts clusters, meaning there is no direct link
between clusters and entity types. We employ the Adjusted Mutual Information (AMI) presented
in section III.5.6 because most datasets have an unbalanced entity type distribution. To recall,
the range of AMI is [−1, 1], and higher values are better. AMI is adjusted for chance: random
clustering produces a score close to 0.

V.4.4 Implementation Details

CITRUN follows a “train once, test anywhere” [310] methodology: it needs to be trained
once on D𝑆 and can be applied to multiple D𝑇 datasets without further effort. Regarding
hyperparameters, as CITRUN is unsupervised, we cannot use validation data to adjust them.
We opt for standard hyperparameter values defined by Devlin et al. [6].

Entity Extraction We use DeBERTa v3 embeddings [293, 311], train the model for 4 epochs,
using the Adam optimizer [312], a decreasing linear schedule without warmup, a learning
rate of 2 × 10−5, a batch size of 32, and dropout (𝑝 = 0.1) between the EncLM and the linear
classifier.

5In fact, this change is not documented in their respective papers, but it is present in their source code.
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Entity Typing We use BERT embeddings. We employ the simplest prompt possible, defined
in equation (V.2), and train the model for 4 epochs, using the Adam optimizer [312], a decreasing
linear schedule without warmup, a learning rate of 2 × 10−5, a batch size of 128 as discussed in
section V.3.2.3, and dropout (𝑝 = 0.1). For the brute force cluster estimation, we fix the upper
bound 𝐾 to 50 and increase it if �̂� is close to 𝐾 (𝐾 = 100 for GUM, 𝐾 = 100 for CITRUN
trained on CoNLL and tested on i2b2 and 𝐾 = 500 for Pile-NER and i2b2).

Computational Resources Experiments were run on a single machine with 12 cores, 128 GB
of RAM, and a GPU with 48 GB of VRAM. The required computational time is equivalent
to BERT fine-tuning and depends on the size of the training dataset. With CoNLL, training
usually last 50 min, and with Pile-NER, 5 h.

V.5 Results & Analysis
For CITRUN, each experiment is repeated with five random seeds, and we report the average
value and the standard deviation.

V.5.1 Comparison With the Baselines
The performances of CITRUN and the few-shot, zero-shot, and unsupervised baselines on the
13 D𝑇 datasets are reported in figure V.4 and table V.1.

First, CITRUN (Pile-NER) outperforms UniNER Uns (GPT-3.5) with an average AMI
gap of 4.3 % and beats it on 12 datasets. UniNER Uns (GPT-3.5) has a short advantage of 1 %
in AMI for Restaurant. CITRUN (Pile-NER) surpasses ChatIE Uns (GPT-3.5) and ChatIE
Uns (Llama 3) with an average AMI gap of 18 % and 19 %. CITRUN (CoNLL), trained on a
much more distant D𝑇 dataset, surpasses UniNER Uns (GPT-3.5), ChatIE Uns (GPT-3.5), and
ChatIE Uns (Llama 3) with average AMI gaps of 3.6 %, 17 %, and 19 %. CITRUN, with its
simple EncLM embeddings and architecture, performs significantly better than LLM-based
unsupervised NERs.

Even compared to the more supervised zero-shot and few-shot models, CITRUN is not out
of the picture. CITRUN (Pile-NER) performs significantly better than ChatIE (Llama 3)
or PromptNER, and matches or surpasses the performances of UniNER on six datasets,

ChatIE (GPT-3.5) on five datasets, GNER on five datasets, GoLLIE on four datasets,
MANNER on three datasets, and GliNER L on one dataset. Without accessing annotated data

in D𝑇 nor knowing the target entity types E𝑇 , CITRUN is competitive with the state-of-the-art
zero-shot and few-shot approaches.

Additionally, the comparison between ChatIE (GPT-3.5) and ChatIE Uns (GPT-3.5) is
interesting. As stated in section V.4.1, translating zero-shot baselines to unsupervised ones
seems trivial at first glance. We insisted on the fact that fine-tuned baselines were not easily
adaptable to work unsupervised, as their training is entirely based on the presence of an
entity-type schema. For the frozen-LLM-based ones, we have proposed to modify ChatIE
prompting to work fully unsupervised. We can see in table V.1 that ChatIE Uns performances are
extremely low compared to ChatIE (zero-shot), the average gap is 21 %. The small modification
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(F) Few-Shot
MANNER
PromptNER*

(Z) Zero-Shot
UniNER
GoLLIE
GliNER L

ChatIE (GPT-3.5)
ChatIE (Llama 3)
GNER (T5)

(U) Unsupervised
ChatIE Uns (GPT-3.5)
ChatIE Uns (Llama 3)
UniNER Uns (GPT-3.5)
CITRUN (CoNLL)
CITRUN (Pile-NER)

(F) Few-Shot
MANNER
PromptNER*

(Z) Zero-Shot
UniNER
GoLLIE
GliNER L

ChatIE (GPT-3.5)
ChatIE (Llama 3)
GNER (T5)

(U) Unsupervised
ChatIE Uns (GPT-3.5)
ChatIE Uns (Llama 3)
UniNER Uns (GPT-3.5)
CITRUN (CoNLL)
CITRUN (Pile-NER)

* We could not run PromptNER on i2b2 due to excessive RAM consumption.
† The standard deviation for CITRUN is displayed as a vertical bar.

Figure V.4: NER performances (AMI) of CITRUN, few-shot, zero-shot, and unsupervised
baselines. CITRUN is less supervised than zero-shot and few-shot baselines and smaller than
zero-shot and unsupervised baselines. Exact values can be seen in table V.1.
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V.5 Results & Analysis

Table V.1: NER performances (AMI %) of CITRUN, few-shot, zero-shot, and unsupervised
baselines. The best AMI for each D𝑇 dataset and setting (few-shot, zero-shot, unsupervised) is
in bold, and the best AMI for each D𝑇 dataset is in green.

AI Liter. Music Politics Science FabNER GENIA

Few-Shot
MANNER 42.3 42.5 49.9 44.4 47.7 22.0 26.1

PromptNER 29.2 22.8 36.1 35.8 34.4 8.8 14.4

Zero-Shot
UniNER 43.1 48.6 50.2 46.6 49.4 23.5 29.8
GoLLIE 48.0 50.2 52.6 49.7 52.7 21.1 30.4

GliNER L 45.1 50.7 58.4 50.0 54.1 27.9 34.5
ChatIE (GPT-3.5) 39.4 46.5 49.8 43.0 52.1 25.2 28.9
ChatIE (Llama 3) 18.0 20.3 17.8 19.8 17.1 18.9 18.5

GNER (T5) 41.9 45.9 52.7 49.1 50.2 18.3 26.6

Unsupervised
UniNER Uns (GPT-3.5) 33.5 42.8 48.1 40.3 43.7 21.2 24.4

ChatIE Uns (GPT-3.5) 12.8 20.4 27.8 27.5 25.7 5.7 7.6
ChatIE Uns (Llama 3) 12.8 18.2 15.5 14.6 16.5 15.6 15.9

CITRUN (CoNLL) 44.3(3) 46.6(5) 50.1(9) 53.7(3) 52.3(6) 14.7(5) 23.5(2)
CITRUN (Pile-NER) 39.4(9) 49.5(8) 52.5(3) 48.5(7) 50.9(4) 23.5(2) 25.3(3)

GENTLE GUM i2b2 Movie Restau. WNUT 17

Few-Shot
MANNER 26.5 26.9 40.8 49.0 32.6 27.2

PromptNER 21.9 18.2 * 28.4 14.4 16.1

Zero-Shot
UniNER 32.5 32.0 25.8 39.8 23.8 24.2
GoLLIE 22.8 20.7 43.1 48.5 29.4 32.3

GliNER L 32.8 28.4 29.4 43.6 37.1 30.3
ChatIE (GPT-3.5) 30.4 31.1 30.0 46.2 33.8 24.1
ChatIE (Llama 3) 20.9 24.0 14.7 20.3 11.5 12.8

GNER (T5) 24.6 19.0 36.0 48.1 35.9 28.8

Unsupervised
UniNER Uns (GPT-3.5) 20.4 23.3 15.5 34.9 29.0 15.0

ChatIE Uns (GPT-3.5) 11.2 11.1 6.1 26.4 17.7 6.8
ChatIE Uns (Llama 3) 18.6 17.9 6.8 16.5 20.0 7.0

CITRUN (CoNLL) 25.2(5) 25.6(1) 35.7(1.3) 30.3(1.0) 12.1(1.5) 24.6(4)
CITRUN (Pile-NER) 25.0(4) 26.7(1) 16.2(2) 38.4(8) 27.9(5) 24.0(3)

The standard deviation of CITRUN is printed in parentheses.
* We could not run PromptNER on i2b2 due to excessive RAM consumption.
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Table V.2: Number of parameters of CITRUN and few-shot, zero-shot, and unsupervised
baselines. CITRUN is more than 60-70 times smaller than LLM-based NERs.

Model Backbone # Parameters

Few-Shot
MANNER BERT 110 M
PromptNER BERT 300 M (×2.7)

Zero-Shot

UniNER Llama 7 B (×60)
GoLLIE Code-Llama 7 B (×60)
GliNER L DeBERTa v3 300 M (×2.7)
ChatIE (GPT-3.5) GPT 3.5 †
ChatIE (Llama 3) Llama 3 8 B (×70)
GNER Flan T5 275 M (×2.5)

Unsupervised

UniNER Uns (GPT-3.5) GPT 3.5 †
ChatIE Uns (GPT-3.5) GPT 3.5 †
ChatIE Uns (Llama 3) Llama 3 8 B (×70)
CITRUN DeBERTa v3 / BERT 110 M*

† Although not disclosed, GPT-3.5 is expected to be larger than Llama 3.
* CITRUN uses two encoders with a total of 200 M parameters (90 M for DeBERTa v3 and 110 M for BERT). But
at any given time, only one is loaded.

of removing the predefined list of entity types tremendously impacts performance. When
looking closely, ChatIE Uns does not group together entities in coherent entity types and results
instead in predicting overspecific entity types. For instance, ChatIE has identified 12,621 entity
types (instead of 10) on the GUM dataset, such as lantern festival, theme music, light show,
laser light show. As a side note, it is also a problem of UniNER Uns, at a lesser degree, though
(see section V.5.5). This demonstrates that knowing entity types is a significant supervision
signal (for zero-shot baselines), and removing it to achieve unsupervision is very challenging.

Finally, it is interesting to put the size of the compared baselines in perspective with the
performances (see table V.2). CITRUN is the smallest model with its 110 M parameters (equally
with MANNER), yet it competes with much larger LLM baselines that are one to two orders
of magnitude bigger. In compute-constrained environments, CITRUN is a good alternative to
larger models, especially LLMs. As an aside, contrary to the intuitive belief that LLMs perform
particularly well in unsupervised and zero-shot settings, CITRUN (Pile-NER) and GliNER L
(both with EncLM) have very competitive results on our 13 domain-specific D𝑇 datasets.

V.5.2 Cross-Domain Capabilities & Synthetic Annotations

The results in figure V.4 demonstrate that CITRUN works well with a distant D𝑇 (CoNLL) and
with synthetic data (Pile-NER), as they both lead to better performances than unsupervised
baselines. CITRUN (Pile-NER) has a slight 0.7 % advantage in AMI compared to CITRUN
(CoNLL).

However, when looking closely, CoNLL and Pile-NER build models with different behaviors
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V.5 Results & Analysis

Table V.3: Comparison of precision (P) and recall (R) (in %) of CITRUN for MD between
CoNLL and Pile-NER. The standard deviation is displayed in parentheses. Each D𝑇 dataset’s
best precision and recall are in bold.

D𝑆 CoNLL Pile-NER

P R P R

D𝑇

AI 86.2(2) 46.6(5) 74.1(6) 77.5(5)
Liter. 87.2(8) 80.9(4) 85.5(3) 77.6(2)

Music 84.1(4) 74.5(2) 85.5(3) 82.8(4)
Politics 78.9(3) 82.3(2) 82.1(5) 81.2(3)
Science 82.8(5) 67.6(9) 81.1(5) 81.3(7)

FabNER 52.0(7) 5.5(3) 25.8(6) 18.6(7)
GENIA 46.5(1.2) 27.1(1.4) 46.3(2) 60.9(1.0)

GENTLE 32.0(1.2) 6.8(2) 33.1(6) 20.6(3)
GUM 25.8(2) 6.4(1) 28.6(1) 14.2(3)
i2b2 22.1(2.2) 26.8(1.4) 5.5(2) 29.6(9)

Movie 89.9(1.6) 23.0(6) 71.8(1.2) 46.0(9)
Restau. 57.4(3.1) 4.0(1.0) 51.8(1.0) 32.6(9)

WNUT 17 57.1(7) 74.1(1.2) 41.1(4) 76.6(4)

entity
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ut
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35 142
74 19
42 2
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(a) CITRUN trained on CoNLL, tested on AI.

entity
Prediction

127 50
71 22
39 5

159 48
36 3

143 48
120 61
119 26
65 2

154 44
58 2

124 36
156 63
27 1

497 0

(b) CITRUN trained on Pile-NER,
tested on AI.

Figure V.5: Confusion matrices of CITRUN for MD tested on AI. The ∅ row shows the false
positives, and the ∅ column shows the false negatives per entity type.
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Table V.4: MD performances (F1 %) for different architectures trained on CoNLL and tested on
five D𝑇 datasets. The standard deviation is displayed in parentheses. We did not repeat the
experiment for PURE and SpanProto as they were very slow to train. Each D𝑇 dataset’s best F1
score is in bold.

AI Liter. Music Politics Science

BIO (CITRUN) 60.5(4) 83.9(5) 79.0(2) 80.6(2) 74.4(7)
PURE 39.8 37.1 33.8 32.4 35.7

SpanProto 54.1 62.9 59.6 68.7 59.7
WL-Coref 57.4(8) 68.3(1.7) 66.9(2.1) 72.1(1.3) 63.4(3.3)

(although similar performances). In table V.3, we display the precision and recall of CITRUN
for mention detection. Overall, CITRUN tends to have more precision when trained on CoNLL
and more recall when trained on Pile-NER. This is expected: the diversity of Pile-NER helps
CITRUN detect entities better, while the human quality of annotations in CoNLL helps CITRUN
be more precise. This observation is confirmed when we examine the confusion matrices in
figure V.5. On one side, Pile-NER leads to better detections of domain-specific entity types
(such as algorithm, field, metrics, or task), but we also see an increase in false positives (497 for
Pile-NER vs. 151 for CoNLL). On the other side, CoNLL has a slightly better recall for person,
location, or organization, which are precisely the entity types annotated in this dataset.

The question of higher false positives with Pile-NER is interesting. We manually checked
them: from the 497 false positives, 53 % of them are correct mentions not annotated in AI, 42 %
intersect with a true mention (boundary problem), and 5 % are wrong predictions. Overall, the
boundary problem explains the false positive gap between CoNLL and Pile-NER, probably
resulting from Pile-NER’s imperfect annotations.

The 53 % correct entities not annotated in AI come from existing entity types (most missing
mentions are acronyms, for instance, FPR = false positive rate) and new entity types (not in the
14 entity types annotated in AI). The fact that CITRUN identifies correct entity mentions of
new entity types highlights its novelty detection capabilities. This behavior cannot be observed
with the other zero-shot and few-shot baselines as they have a predefined set of entity types.

In conclusion, the cross-domain capabilities of CITRUN are highlighted by the good results
of CITRUN (CoNLL) on the D𝑇 datasets. Broadly speaking, the manual annotations of CoNLL
bring precise results, and the diversity of Pile-NER provides better recall at the cost of precision.
In a novelty detection or exploratory scenario, where recall is key, we advise the reader to use
Pile-NER. Additionally, the analysis of the confusion matrices shows that CITRUN identifies
mentions of novel entity types that are unknown beforehand.

V.5.3 BIO Sequence Labeling for Mention Detection

In section V.3.1, we propose to use a BIO extractor for MD, as we expect the simplicity of this
architecture to bring better generalizability on new D𝑇 . In table V.4, we report the F1 score of
different MD architectures, trained on CoNLL and tested on five D𝑇 datasets. We evaluate the
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Table V.5: AMI scores (in %) of CITRUN for ET on D𝑇 datasets, without ER and with ER on
CoNLL or Pile-NER. ET is evaluated using gold entity spans. The standard deviation is printed
in parentheses. The best AMI for each D𝑇 dataset is in bold.

AI Liter. Music Politics Science FabNER GENIA

w/o ER 43.0(1.4) 40.1(6) 47.8(8) 56.0(8) 56.1(9) 18.6(3) 20.3(7)

ER on CoNLL 56.8(1.4) 56.3(1.1) 60.9(5) 65.4(3) 66.7(3) 26.7(7) 26.6(8)
ER on Pile-NER 54.2(7) 63.1(8) 64.2(5) 66.0(1.1) 66.0(9) 24.1(8) 31.7(6)

GENTLE GUM i2b2 Movie Restau. WNUT 17

w/o ER 15.6(5) 19.7(2) 32.1(6) 21.8(5) 11.3(4) 22.5(3)

ER on CoNLL 21.5(7) 26.1(5) 47.9(6) 46.6(1.3) 35.8(1.4) 34.3(1.1)
ER on Pile-NER 32.7(5) 37.0(2) 49.4(8) 52.1(8) 41.0(5) 41.1(8)

following architectures:

• BIO. It is the architecture implemented by CITRUN.

• PURE [113]. A span-based extractor that combines the start and end embeddings of a
candidate span with a perceptron. It is the architecture we implemented for the PNA
baseline of Linked-DocRED (see section III.6.1).

• SpanProto [116]. A span-based extractor that uses bilinear neurons to combine start
and end embeddings of a candidate span (which provides faster predictions compared to
PURE).

• WL-Coref [58]. A span-based extractor that identifies the “head” of the mention and
recomposes its boundaries using a convolutional network. This model tackles the
quadratic complexity problem of traditional span-based extractors.

In a fully supervised setting, PURE, SpanProto, and WL-Coref are shown to be slightly better
than BIO sequence labeling [58, 113, 116]. However, in our unsupervised cross-domain setting,
BIO performs significantly better than span-based extractors, with an average gap of 40 % with
PURE, 15 % with SpanProto, and 10 % with WL-Coref, while being faster to train. We believe
that the simplicity of our BIO architecture reduces overfitting and benefits generalizability on
new domains. As an aside, this observation was made by Fang et al. [277], who also use BIO
sequence labeling for their few-shot MANNER model.

V.5.4 Impact of the Embedding Refinement

An important component of CITRUN is embedding refinement (ER), which aims to improve
EncLM representations for entity clustering using contrastive learning. In table V.5, we compare
CITRUN entity typing performance without ER and with ER trained on CoNLL or Pile-NER.
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(a) CITRUN tested on Science.
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(b) CITRUN tested on Restaurant.

Figure V.6: Two-dimensional t-SNE visualizations of the entity embeddings of CITRUN. For
each subfigure from left to right: 1. without ER, 2. ER with CoNLL, and 3. ER with Pile-NER.
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We use the gold entity spans from D𝑇 (no MD) to assess only the effect of ER. This is why the
AMI scores are higher than in table V.1.

We see that ER has a significant positive impact with CoNLL and Pile-NER on each of
the 13 D𝑇 datasets, with an average AMI gain of 12.8 % for CoNLL and 16.7 % for Pile-NER
compared to CITRUN without ER. The gain is particularly impressive for datasets that are
difficult for raw BERT embeddings, such as GENTLE, GUM, i2b2, Movie, Restaurant, or
WNUT 17. Pile-NER’s better performances can be explained by its diversity of entity types
(13,000 entity types), which helps to fine-tune entity embeddings more precisely. Nevertheless,
CoNLL achieves honorable performances despite only having four entity types. This validates
the hypothesis that refining entity embeddings on D𝑆 with contrastive learning benefits also
distant D𝑇 .

To give a more visual representation of the effects of embedding refinement, we display in
figure V.6 two-dimensional t-SNE [313] representations of the entity embeddings of the Science
and Restaurant datasets. The entities of Science are already well isolated without ER (see
table V.5). Still, we can notice several improvements: better separation of discipline, organiza-
tion, and academicjournal (CoNLL and Pile-NER); better separation of chemicalelement and
chemicalcompound (Pile-NER); and the multi-type cluster at the top of the w/o ER figure has
disappeared. The effects of ER are more visible with the difficult Restaurant dataset: without
ER, ET cannot discriminate any entity type, and we see huge improvements with ER on CoNLL
or Pile-NER. In particular, it is interesting to see that ER with CoNLL leads to a relatively good
separation of cuisine, hours, or price, even though CoNLL does not contain such entities. The
effects are more complete and more visible with Pile-NER.

In conclusion, ER significantly improves ET performance with CoNLL and Pile-NER. The
best results are achieved with Pile-NER due to its diversity in entity types. ER works well with
the distant D𝑇 dataset CoNLL, with noticeable improvements on unseen entity types. It also
shows that ER is beneficial even with a labeled dataset with a narrow set of entity types (4 for
CoNLL).

V.5.5 Estimation of the Number of Clusters �̂�

As we do not have any information about entity types (contrary to zero-shot approaches),
CITRUN has to infer entity types and their number. In this part, we only consider the brute
force cluster estimation. In table V.6, we display for each D𝑇 dataset its true number of entity
types 𝑘 , the estimated number of clusters �̂� , the corresponding AMI score with �̂� (similar to
figure V.4), and AMI score with the ideal 𝑘 .

Overall, CITRUN tends to overestimate the number of entity types; this effect is more
pronounced with Pile-NER than with CoNLL. However, compared to UniNER Uns (GPT-3.5),
CITRUN provides estimations that are much closer to the truth. Regarding Pile-NER, this
overestimation behavior can be linked to its fine-grained entity types6. We can see this tendency
in the visualization of Science in figure V.6, where the misc class is divided into multiple small

6As a reminder, Pile-NER was annotated using UniNER Uns (GPT-3.5). De facto, Pile-NER exhibits the same
fine-grained entity type weakness as UniNER Uns (GPT-3.5). Fortunately, CITRUN partially mitigates this
issue with a more reasonable estimation of the number of clusters, as shown in table V.6.
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Table V.6: Estimation of the number of clusters �̂� by CITRUN using the brute-force approach
and AMI scores (in %) for NER with true 𝑘 and estimated �̂� . The standard deviation is printed
in parentheses. 𝑘 and �̂� are displayed in green, and the best AMI score for each D𝑇 dataset is in
bold. We also include the number of entity types found by UniNER Uns (GPT-3.5).

AI Liter. Music Politics Science FabNER GENIA

𝑘 14 12 13 9 17 12 5

CITRUN (CoNLL)
�̂� 10 12(1) 20(2) 23(2) 17(2) 8(2) 20(1)

AMI �̂� 44.3(3) 46.6(5) 50.1(9) 53.7(3) 52.3(6) 14.7(5) 23.5(2)
AMI 𝑘 44.5(3) 46.4(4) 51.0(3) 56.5(1.9) 52.9(6) 14.8(5) 26.4(6)

CITRUN (Pile-NER)
�̂� 18(1) 16(1) 26(1) 32(2) 29 32(3) 35

AMI �̂� 39.4(9) 49.5(8) 52.5(3) 48.5(7) 50.9(4) 23.5(2) 25.3(3)
AMI 𝑘 39.2(7) 50.2(6) 54.3(4) 47.8(6) 51.7(5) 25.2(3) 29.0(5)

UniNER Uns (GPT-3.5)
�̂� 155 92 115 103 195 292 319

GENTLE GUM i2b2 Movie Restau. WNUT 17

𝑘 10 11 23 12 9 6

CITRUN (CoNLL)
�̂� 8 35(1) 50(5) 8 4 8(1)

AMI �̂� 25.2(5) 25.6(1) 35.7(1.3) 30.3(1.0) 12.1(1.5) 24.6(4)
AMI 𝑘 25.1(7) 27.0 38.7(9) 29.8(1.0) 11.7(1.6) 24.6(3)

CITRUN (Pile-NER)
�̂� 22(1) 59 197(4) 26 14(2) 16(1)

AMI �̂� 25.0(4) 26.7(1) 16.2(2) 38.4(8) 27.9(5) 24.0(3)
AMI 𝑘 26.0(3) 28.8(1) 23.1(2) 38.7(9) 28.2(5) 25.1(6)

UniNER Uns (GPT-3.5)
�̂� 250 830 1,033 176 117 266
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Table V.7: Estimation of the number of clusters �̂� with brute force or ternary search and AMI
scores (in %) for NER with true 𝑘 and estimated �̂� , when CITRUN is trained on Pile-NER. The
standard deviation is printed in parentheses. 𝑘 and �̂� are displayed in green, and the best AMI
score for each D𝑇 and D𝑇 dataset is in bold.

AI Liter. Music Politics Science FabNER GENIA

𝑘 14 12 13 9 17 12 5
brute �̂� 18(1) 16(1) 26(1) 32(2) 29 32(3) 35

ternary �̂� 19(1) 18(1) 25(2) 32(3) 28(3) 32(4) 34(2)

AMI 39.2(7) 50.2(6) 54.3(4) 47.8(6) 51.7(5) 25.2(3) 29.0(5)
brute AMI 39.4(9) 49.5(8) 52.5(3) 48.5(7) 50.9(4) 23.5(2) 25.3(3)

ternary AMI 39.4(7) 49.2(6) 52.1(3) 49.1(9) 50.6(7) 23.4(2) 25.3(2)

GENTLE GUM i2b2 Movie Restau. WNUT 17

𝑘 10 11 23 12 9 6
brute �̂� 22(1) 59 197(4) 26 14(2) 16(1)

ternary �̂� 23(2) 65(5) 198(4) 24(2) 15(1) 18(1)

AMI 26.0(3) 28.8(1) 23.1(2) 38.7(9) 28.2(5) 25.1(6)
brute AMI 25.0(4) 26.7(1) 16.2(2) 38.4(8) 27.9(5) 24.0(3)

ternary AMI 25.0(5) 26.5(2) 16.2(2) 38.7(6) 28.0(3) 24.1(4)

clusters (compared to CoNLL).
AMI scores with the ideal 𝑘 are close to AMI with �̂� (AMI gap of 0.8 % for CoNLL and 1.5 %

for Pile-NER on average), meaning that the clusterings are relatively similar from a qualitative
point of view even with �̂� ≫ 𝑘7. The long-tail distribution of the cluster membership explains
this. If we take the second confusion matrix of figure V.8, a minority of clusters contains most
entities, and the rest contain few specific entities. In fact, the 17 last clusters represent false
positives8 and members of the misc class (by definition, composed of multiple entity types). It
explains why, even with this number of clusters, the performances do not plummet because the
supplementary clusters model essentially false positives and composite classes.

V.5.6 Faster Estimation of the Number of Clusters �̂�

Up to this section, we used the brute force algorithm to estimate the number of clusters �̂� . The
computational time is acceptable for the small datasets, but for the biggest D𝑇 datasets (e.g.,
i2b2 or GUM), it can take up to hours (see table V.8), representing, in fact, the major part of the
run. For instance, the cluster estimation lasts 13.6 h on average for D𝑆 = Pile-NER and D𝑇 =

i2b2. This motivates the ternary search algorithm we presented in section V.3.2.2.
In table V.7, we display the comparison of the estimation of �̂� between the brute force

7Except CITRUN (Pile-NER) tested on i2b2. I2b2 is a hard D𝑇 dataset, even for the baselines (figure V.4).
8That can be correct entities, as we have seen in section V.5.2.
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V CITRUN

Table V.8: Execution time (in s) of the cluster estimation using the brute force or ternary search
algorithms when CITRUN is trained on Pile-NER.

AI Liter. Music Politics Science FabNER GENIA

brute AMI 88(2) 98(9) 191(23) 236(12) 164(15) 505(29) 390(36)
ternary AMI 48(1) 52(1) 69(1) 89(3) 69 189(4) 142(5)

(÷1.8) (÷1.9) (÷2.8) (÷2.6) (÷2.4) (÷2.7) (÷2.7)

GENTLE GUM i2b2 Movie Restau. WNUT 17

brute AMI 115(10) 1,823(157) 49,039(214) 276(28) 138(14) 99(11)
ternary AMI 65(1) 906(28) 2,440(173) 117(2) 74 57(1)

(÷1.8) (÷2.0) (÷20.1) (÷2.3) (÷1.9) (÷1.7)
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(a) ET with brute force algorithm.
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(b) ET with ternary search algorithm.

Figure V.7: BIC curves computed to estimate the number of clusters �̂� , when CITRUN is trained
on Pile-NER and tested on i2b2. Each cross represents a computed clustering. With the brute
force algorithm, 500 clusterings were calculated, and with ternary search, only 21.
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V.5 Results & Analysis

Table V.9: MD performances (F1 %) of CITRUN trained on Pile-NER, using various EncLM
embeddings. The standard deviation is printed in parentheses. The best F1 for each D𝑇 dataset
is in bold. The last column displays the average F1 across the 13 D𝑇 datasets.

AI Liter. Music Politics Science FabNER GENIA

BERT 73.7(5) 76.4(2) 80.3(2) 79.7(5) 78.4(3) 20.0(6) 50.7(3)
RoBERTa 74.3(5) 79.5(3) 81.9(4) 80.5(2) 78.8(3) 20.5(5) 51.2(5)

ERNIE 73.4(2) 76.0(4) 80.7(2) 80.1(4) 78.0(4) 20.6(2) 51.2(5)
ELECTRA 73.9(4) 76.3(3) 81.3(2) 79.6(4) 79.2(2) 20.5(3) 51.4(3)

DeBERTa v3 75.6(5) 81.4(4) 84.6(3) 81.6(3) 80.9(5) 21.2(6) 52.2(4)

GENTLE GUM i2b2 Movie Restau. WNUT 17 Average

BERT 23.3(3) 19.0(1) 9.2(3) 56.9(7) 38.4(6) 47.6(6) 50.3
RoBERTa 23.9(7) 18.9(4) 9.6(4) 52.2(1.9) 39.8(6) 54.2(8) 51.2

ERNIE 22.6(5) 19.0(2) 9.4(2) 57.9(5) 40.0(7) 48.2(5) 50.5
ELECTRA 23.1(6) 18.2(3) 9.5(3) 59.6(3) 41.5(6) 48.5(6) 51.0

DeBERTa v3 25.2(3) 18.9(3) 9.5(1) 56.1(1.1) 39.8(8) 53.4(5) 52.4

algorithm and the ternary search, and the corresponding NER AMI scores; and in table V.8 we
display the corresponding execution time. We see that the estimation of �̂� with ternary search
equals the brute force algorithm or is in the standard deviation range. This results in ternary
search AMI scores virtually identical to brute force scores.

More interesting is the gain in terms of computational time. As displayed in table V.8, the
ternary search is 1.7 to 2.7 quicker to run compared to the brute force algorithm, even on the
smallest datasets. The gain is particularly impressive for the large i2b2 dataset with its large �̂�
where the gain is twenty-fold. Initially, the runs lasted 13.6 h, and with the ternary search, they
are reduced to 41 min. The computational gain is less important for smaller sets of entity types
(although still very significative) because of the slight rugosity of the BIC curve. This rugosity
forces us to compute multiple clusterings sequentially once 𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛 ≤ 5.

The case of the i2b2 dataset is especially interesting. In figure V.7, ternary search quickly
converges to the minimum value without evaluating every possible �̂� . In particular, the range
[0, 140] clusters is eliminated in two steps (5 min), whereas brute force needs 2 h to evaluate
the same interval. Ternary search finds �̂� after 21 clusterings, compared to the 500 needed for
the brute-force algorithm (24 times less).

In conclusion, the computational gain of ternary search is particularly important with large
D𝑇 datasets with many different entity types. It is also relevant for smaller datasets, bringing a
two-fold decrease in calculation time. Empirically, we find no difference in the estimation of �̂�
and AMI scores between brute force and ternary search.
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V CITRUN

Table V.10: ET performances (AMI %) of CITRUN trained on Pile-NER, using various EncLM
embeddings. ET is evaluated using gold entity spans. The standard deviation is printed in
parentheses. The best AMI for each D𝑇 dataset is in bold. The last column displays the average
AMI across the 13 D𝑇 datasets. The number of clusters is estimated using the ternary search
algorithm, which explains why AMI scores are not identical to table V.5 (brute force). They are
nevertheless in the range of standard deviation.

AI Liter. Music Politics Science FabNER GENIA

BERT 54.3(3) 64.1(1.0) 64.4(5) 66.2(1.3) 65.9(4) 24.5(5) 32.1(5)
RoBERTa 53.7(8) 63.7(1.1) 64.7(7) 63.3(1.7) 65.7(1.0) 25.0(7) 28.1(4)

ERNIE 54.2(7) 62.7(1.4) 64.4(9) 63.0(1.2) 65.9(8) 24.7(4) 30.2(5)
ELECTRA 53.6(2) 57.9(2.0) 61.1(1.2) 56.7(1.5) 62.7(1.5) 22.7(7) 26.4(2.6)

DeBERTa v3 53.0(1.0) 59.0(1.1) 61.6(7) 58.5(1.3) 62.9(8) 25.0(2) 25.4(4)

GENTLE GUM i2b2 Movie Restau. WNUT 17 Average

BERT 33.8(7) 35.7(1) 50.2(5) 52.0(3) 40.7(8) 40.9(1.2) 48.1
RoBERTa 34.0(5) 36.2(3) 51.2(7) 47.4(6) 47.2(6) 44.1(5) 48.0

ERNIE 33.8(6) 35.6(3) 48.5(3) 54.2(8) 47.3(1.0) 44.2(3) 48.4
ELECTRA 32.8(5) 34.1(1.2) 48.5(1.1) 51.8(9) 45.7(1.4) 41.8(6) 45.8

DeBERTa v3 33.4(3) 34.3(1) 50.8(5) 48.7(6) 47.6(9) 46.7(6) 46.7

V.5.7 Impact of the EncLM Embeddings

With CITRUN, we primarily utilize DeBERTa v3 [293, 311] for MD and BERT [6] for ET. In
this section, we evaluate the performances of other popular EncLM such as RoBERTa [256],
ERNIE [120], or ELECTRA [314].

In table V.9, we display the MD performances of various EncLMs when CITRUN is trained
on Pile-NER, and in table V.10, we show the ET performances of the same EncLMs (also on
Pile-NER). Broadly speaking, CITRUN works relatively well, regardless of the EncLM used
as a backbone. Interestingly, the “older” model, BERT, is not out of the picture and performs
similarly to more recent alternatives.

For MD, we see an advantage of DeBERTa v3 over the other approaches, with an average
gap of 1.2 % with the second-best model RoBERTa. We link these better performances to the
richer and broader pre-training dataset compared to the other EncLM. BERT achieves the worst
performances. This explains why we have chosen DeBERTa v3 as the backbone for MD.

The performances are closer for ET, with BERT, RoBERTa, and ERNIE nearly indistin-
guishable (especially given the standard deviation). ELECTRA and DeBERTa v3 have lower
AMI scores. The behavior of DeBERTa v3 is surprising, as it is generally recognized as the
best-performing EncLM currently available. The performances of DeBERTa v3 are even worse
without ER (not shown), achieving half of those of BERT without ER. The same conclusion can
be drawn with ELECTRA. DeBERTa v3 and ELECTRA seem to have a less entity-type-oriented
embedding space than BERT. As a result, we have chosen BERT embeddings for CITRUN.
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V.6 Conclusion

ERNIE and RoBERTa would have also been valid choices.

V.5.8 Qualitative Analysis

We want to finish this analysis by giving a qualitative overview of the performances of CITRUN.
In figure V.8, we display three confusion matrices of CITRUN trained with different D𝑆 datasets
and tested on different D𝑇 .

The three confusion matrices show a relatively clear diagonal, meaning that CITRUN
correctly identifies most entity types. It is an impressive result: without annotated data in D𝑇

nor any information on entity types or their count, CITRUN detects and structures entities in a
scheme similar to the ground truth. The confusion matrices are, in fact, very similar to those of
PromptORE (see figure IV.3), demonstrating that our prompt-based typing method works well
to identify relation and entity types.

It is interesting to look at the confusions made by CITRUN. CITRUN merges country and
location (Science and AI); person and scientist/researcher (Science and AI); enzyme and protein
(Pile-NER Science); task, product, field, algorithm (AI); or conference, university, organization
(AI). CITRUN confuses semantically close entity types, which is a reassuring behavior. It is
also a constraint linked to unsupervised NER. As we do not provide the list of entity types,
CITRUN organizes entities in a semantically coherent scheme that is a valid typing scheme but
not exactly the dataset annotation schema.

Finally, CITRUN organizes false positives and misc entities, a composite of multiple
underlying types. It explains why CITRUN tends to overestimate the true number of entity
types.

In conclusion, CITRUN organizes entities in a coherent typing scheme that is close to the
true entity types. This analysis also highlights CITRUN’s exploratory abilities. It can identify
and organize entities into meaningful groups without labeled data in D𝑇 . CITRUN efficiently
processes unannotated documents to uncover primary entities and their types, setting the stage
for further refinement through more supervised methods.

V.6 Conclusion

In this chapter, we presented CITRUN, our unsupervised and open-world NER model that
transfers knowledge from D𝑆 to D𝑇 without supervision. The literature review showed that
unsupervised NER lags while significant progress has been made towards lower resource
NER (in particular, zero-shot NER). Most existing “unsupervised” models are not entirely
unsupervised, as they rely on some forms of supervision or, similarly to unsupervised RE, on
hyperparameters complex to adjust without in-domain validation data. CITRUN is proposed to
be the first NER compatible with an utterly unsupervised scenario, to provide a strong baseline,
and to stimulate further research. CITRUN is built upon the success of PromptORE for the
entity typing part, keeping the model voluntarily simple. We have nevertheless refined it in
several aspects. We proposed to apply contrastive learning using labeled data from D𝑆 to elicit
entity types better. We also implemented a faster algorithm to estimate the number of clusters �̂� .
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Figure V.8: Confusion matrices of CITRUN for NER tested on various D𝑇 datasets. Columns
and rows were reordered using the algorithm described in appendix A. The ∅ row shows the
false positives, and the ∅ column shows the false negatives.

106

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0111/these.pdf © [P-Y. Genest], [2024], INSA Lyon, tous droits réservés



V.6 Conclusion

Tests on 13 domain-specific datasets demonstrate that CITRUN outperforms LLM-based
unsupervised NERs and is competitive with state-of-the-art zero-shot NER models without
requiring prior knowledge of D𝑇 . This is a truly impressive result, given that the simple EncLM
embeddings of CITRUN compete with much larger LLMs. We believe an essential point
for CITRUN’s success is its architectural simplicity and parameter efficiency, which achieve
state-of-the-art results. This makes it easier to deploy in a realistic and constrained production
environment.

Ablation studies show that ER brings significant performance gains and works well even
with a distant D𝑇 dataset. Ternary search shortens the computational time needed to estimate
the number of clusters considerably (two times in general and up to twenty times faster on the
largest dataset). Qualitative results demonstrate CITRUN’s exploratory capabilities and ability
to organize entities in semantically coherent clusters close to actual entity types.
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We now arrive at the concluding chapter of this thesis. We started this manuscript by
observing the exponential evolution of the quantity of information, which is increasingly
at the economic core of our society. Most of this information is unstructured and remains
underexplored. In particular, domain-specific unstructured document collections, such as
biomedical literature, scientific articles, economic reports, etc., are goldmines but are just
starting to be exploited due to the complexity of extracting reliable information. In chapter II,
we summarized the impressive advances in information extraction. We also highlighted the
current shortcomings:

• End-to-end IE models encompassing named entity recognition, coreference resolution,
entity linking, and relation extraction are lacking.

• The more realistic document-level IE setting is underexplored and brings unique challenges,
such as information scarcity and long context handling.

• Most IE approaches assume a closed world, where entity and relation types are predeter-
mined, whereas the harness of unstructured documents requires open-world models.

• Annotated data is not always available, particularly in specific domains that are the most
interesting to explore.

In chapter III, we explored the feasibility of end-to-end document-level IE by creating the
first large-scale document-level IE dataset, proposing a complete set of evaluation metrics, and
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VI.1 Summary of the Contributions

evaluating baseline models on the dataset. In chapter IV, we proposed a novel architecture to
tackle unsupervised relation extraction (both ensuring open-world capabilities and minimizing
the quantity of annotated data required). This architecture was then generalized and improved
for open-world named entity recognition in chapter V.

VI.1 Summary of the Contributions

VI.1.1 Dataset and Metrics to Evaluate Information Extraction Models

A prerequisite to developing end-to-end IE is a large, diverse, and document-level dataset,
manually labeled for NER, CR, EL, and RE, to enable the training and evaluation of document-
level IE models. Such a dataset was nonexistent. Therefore, our first contribution was to create
Linked-DocRED.

To do that, we complemented the existing and widely used DocRED dataset with entity
linking annotations. To minimize the annotation effort while maintaining human quality, we
implemented a semi-automatic multi-step entity linking process. First, observing that DocRED
documents are sourced from Wikipedia, we aligned Wikipedia article wikilinks with DocRED
entities using the Needleman-Wunsch algorithm. This provided human-quality disambiguations
(as human contributors edit wikilinks) at a low cost. Then, entity linking was complemented
with common knowledge and contextual information, and the last undisambiguated entities
were manually labeled. This process also allowed us to correct some entity and coreference
errors of DocRED. Linked-DocRED contains more than 95,000 disambiguated entities, 38,000
coreferences, and 50,000 relations.

A second point missing from the state of the art was evaluation metrics. Indeed, the
usual mention-level metrics fall short when long documents with large coreferent clusters are
considered. These metrics are “hard”, meaning a coreference cluster is considered entirely
wrong if it lacks a single coreference (or contains a supplementary one). This leads to
poorly discriminative metrics [21]. We proposed complementing the “soft” metrics defined
by Zaporojets et al. [21] for the entity linking task and generalizing them for open-world IE
replacing the notion of F1 score by the clustering V-measure, B3, ARI, and AMI scores.

The evaluation of a solid end-to-end IE baseline demonstrated promising results, notably
outperforming more complex multitask learning and integrated baselines. It also highlighted
the challenges of cascading errors (imperfect NER and CR substantially impact RE and EL
performances) and the complexity of handling long documents. Above all, our fully supervised
and closed-world baseline achieved F1 scores that are far from perfect (50 % – 60 %), which
raised the question of the current feasibility of an open-world and low-resource document-level
IE.

VI.1.2 Towards Unsupervised Open-World Relation Extraction

Considering the previous uncertainty and question about the practicability of open-world and
low-resource IE, we decided to first focus on a subset of IE, relation extraction, to develop a
novel open and unsupervised method.
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We noticed previous approaches were tested on simple datasets (general domain, few relation
types), and critical parts of their implementation (unsupervised hyperparameter tuning) were
unclear. In particular, the then state-of-the-art approach, SelfORE [197], was observed to be
highly sensible to hyperparameter values that needed to be adjusted precisely for each test
dataset, which is difficult to do in a “true” unsupervised setting.

As a result, we proposed PromptORE, which relies on EncLM prompting1 to generate
relation-type embeddings that are then clustered to identify groups of instances that express the
same relation type. We were particularly vigilant in reducing the number of hyperparameters
and providing unambiguous methods to adjust them unsupervised. Using prompting allowed us
to avoid fine-tuning PromptORE and thus remove all training-related hyperparameters. We also
proposed estimating the number of clusters (relation types) using the simple elbow rule method.

Experimental results showed that PromptORE outperformed previously state-of-the-art
methods by a large margin (18 % – 20 % in B3, V-measure, and ARI), while being simpler and
not hyperparameter dependant. Qualitative analysis of PromptORE’s confusion matrices also
demonstrated that it organizes relation instances in clusters that follow a semantically coherent
scheme close to the true relation types.

VI.1.3 Generalization to Open-World Named Entity Recognition

Encouraged by the successes of PromptORE, we then explored a second major task of IE,
named entity recognition, under the same unsupervised and open-world setting.

Similarly to the previous contribution, we observed weaknesses in the experimental setup of
state-of-the-art unsupervised baselines. The majority of them were not open-world [35, 36,
37, 38], as they required supervision for each entity type. On the other side of the spectrum,
zero-shot approaches that have seen rapid progress were low-resource but assumed a closed
world.

To tackle both shortcomings, we proposed CITRUN. CITRUN follows a two-step process,
with mention detection and entity typing. For entity typing, we adapted the unsupervised
prompting method of PromptORE for named entity recognition. We then complemented it by
the use of off-domain labeled data, either coming from widely used datasets (CoNLL-2003
[39]) or synthetically annotated data (Pile-NER [40]). This off-domain data was employed to
improve entity type embedding using contrastive learning. We experimentally observed that
this embedding refinement step was beneficial, even when the domains were conceptually and
stylistically very far away. For the mention detection subtask, we observed that the simple BIO
labeling architecture was very effective, while more complex span-based models had lower
cross-domain capabilities.

Experimental results showed that CITRUN significantly outperformed LLM-based unsu-
pervised and open-world NER models while being 70 times smaller. Compared to the more
supervised zero-shot NERs, CITRUN was not out of the picture and achieved competitive results.
The fact that CITRUN, with its small and simple architecture, outperforms LLM-based models,
particularly in low-resource settings (usually the private ground of LLMs), is of particular

1We recall that PromptORE was presented before the rise of LLMs (in fact, before the presentation of ChatGPT).
Prompting, especially of EncLMs, was not a standard practice in the unsupervised RE domain.
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Figure VI.1: End-to-end open-world information extraction tentative architecture.

interest to the scientific community. Like PromptORE, the qualitative analysis demonstrated
that CITRUN organizes the extracted entity mentions in clusters close to the true entity types.

We want to finish this summary of our contributions by returning to the motto mentioned
at the beginning of this thesis: 枯れた技術の水平思考 [Lateral Thinking with Seasoned
Technology]. Our three central contributions show that proven tools: the Needleman-Wunsch
algorithm (1970 [132]), k-means (1957 [258, 259]), BIC (1978 [299]), ternary search, BERT
(2019 [6]), BIO labeling (1999 [5]), or the triplet margin loss (2010 [300]), achieve state-of-the-
art results in multiple natural language processing tasks, when they are well-chosen and carefully
combined. In an era where models are exploding in size and where some mathematically and
conceptually complex contributions lead to little significant results, we hope to have brought
new (in fact, old) ideas to the information extraction field.

VI.2 Perspectives for Future Work
The conclusion of this research work is also the realization that although many contributions
have been made, the road to efficient open-world, low-resource, and document-level IE is still
long. We want to finish this thesis by succinctly evoking promising research areas for future
work.

VI.2.1 Generalizing CITRUN and PromptORE to End-To-End
Information Extraction

As highlighted in the literature review chapter, no open-world end-to-end IE model is available
today. Implementing and testing such an end-to-end model is a priority to know its behaviors,
capabilities, performances, and weaknesses to stimulate research in that area. Linked-DocRED
is an ideal dataset to test and evaluate such a model, with its scale and diversity. Our two
contributions with CITRUN and PromptORE for open-world RE and NER pave the way towards
this objective. We propose a tentative architecture in figure VI.1.

Entity and relation typing modules can be directly adapted from PromptORE and CITRUN
and have demonstrated strong performance. Mention detection is also implemented by CITRUN.
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VI Conclusion

We believe a single model can tackle the coreference resolution and relation detection phases.
Indeed, coreference can be seen as a particular type of relation. In fact, they both encounter the
same challenges, such as extended context, combinatorial explosion, and scarcity [27, 57, 58,
59, 176, 178]. We would favor recent sequence-based (or evidence-based) document-level RE
models, such as [178, 182, 184], due to their simplicity and performance. We believe they could
be trained cross-domain or using synthetically annotated documents (as a side note, Li et al.
[184] obtains good results with synthetically augmented datasets), extending the principles of
CITRUN.

Finally, the simple entity linking baseline implemented in chapter III (Linked-DocRED) can
be employed, but recent alternatives, such as ReFinED [315], are also valid choices.

VI.2.2 Combining Closed-World and Open-World Information Extraction

When analyzing a sizeable domain-specific document base, it is (nearly) impossible to determine
all entity and relation types exhaustively. Usual closed-world models would miss such non-
envisioned knowledge. On the contrary, with their autostructuration capabilities, open-world
models can detect and organize such novel information. However, this openness comes with the
drawback that the model determines the schema, and it may be more or less in line with the
user’s desires. Indeed, the qualitative analyses of PromptORE and CITRUN showed that they
produce semantically coherent typing schemes, but they are not identical to the target ones. For
instance, PromptORE merged all family relation types (see figure IV.3) or CITRUN persons
and scientists (same for artists or politicians, see figure V.8). This is problematic for use cases
that require a specific typing scheme to be applicable.

That is why we think a relevant research area is to combine the closed-world and open-world
settings. This would allow the user to predefine a typing scheme for entities and relations he
is aware of while leaving the door open to novel unseen knowledge, for which the model will
provide a generated typing structure.

Some work has been done towards that topic in the open-world RE domain with RoCORE
[198], CaPL [199] (soft version of RoCORE), or ASCORE [202]2. RoCORE and ASCORE
assume access to annotated data for predefined relation types. They use this data to learn a
classifier to predict these relation types and improve relation embeddings for unseen relation
types (that are then clustered). In practice, this supervision allows them to perform better
than PromptORE on seen and unseen relations. ASCORE adopts a semi-supervised clustering
approach, where labels constrain the clustering. However, these proposed approaches are not
ideal as they require annotations for specific relation types on the target domain. They cannot
be considered low-resource for the closed-world part. To our knowledge, no attempt has been
made to combine closed-world and open-world IE in a completely low-resource setting.

A good research direction may be to generalize these previous works to be trained on
cross-domain or synthetic datasets. However, a way to specify the predefined scheme during
predictions would be required, as it may differ from the cross-domain train dataset.

2CaPL and ASCORE are anterior to PromptORE.
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VI.2.3 Involve the User (in the Loop)
Finally, even when specifying the scheme beforehand, IE models will unlikely achieve perfect
performances, specifically due to the low-resource constraint.

We believe another important research direction is to involve the user in the training loop so
that it can correct the model’s errors and refine its predictions. At the same time, we want this
involvement to be minimal and the most beneficial possible. Regarding this topic, two current
research areas in IE are active learning and data augmentation.

ASCORE [202] proposes an active learning strategy for RE, where the model chooses batches
of relations candidates that need to be annotated by the user. The batches are selected to cover
the embedding space (diversity-based active learning), and individual points are chosen to be
located in high-density areas (embeddings in a small neighborhood are expected to have the
same relation type). The annotated instances are then employed to constrain the clustering,
which generates, in turn, pseudo labels for every relation candidate. The embedding model’s
weights are updated to improve the representations. However, multiple remaining questions
with this approach remain open: How can we generalize it to entities, coreferences, and entity
linking? How can we minimize the user’s action in the annotation process? Is it better to
annotate full documents, individual candidates, etc.?

Regarding the second data augmentation area, Dagdelen et al. [25] proposes a human-in-the-
loop bootstrapping process for generative IE. They implement a three-step training procedure.
First, the user manually annotates a small document sample (approximately 100 documents),
which is used to fine-tune an LLM partially. Second, the LLM generates pseudo labels on more
documents (approximately 500 in their setup) that are checked and complemented by the user.
Finally, the model is wholly fine-tuned on the total sample. Their method is very promising and
targets specific domains where annotation is scarce (biomedical in their paper), but it needs to
be extended to open-world IE. Additionally, it could be interesting to include active learning
strategies to select valuable documents to annotate more effectively.

In conclusion, involving the user in the prediction process is beginning to achieve promising
results, but much work remains to be done. We believe this type of approach will be
particularly interesting for the industrial domain3 to provide tailored solutions to complex and
domain-specific use cases.

3As a matter of fact, Dagdelen et al. [25] presents a realistic biomedical information extraction use case in their
article.
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A Unsupervised Confusion Matrix

A useful tool to qualitatively analyze the performance of a classifier is the confusion matrix
[316]. Each row of the confusion matrix represents the instances in an actual class (e.g., entity
or relation type), and each column represents the instances in a predicted class. Thus, the
matrix’s diagonal shows correctly predicted instances, and the lower and upper triangles display
the errors (also called confusions).

However, when implementing models based on unsupervised approaches (typically clustering),
where classes are not predefined, a confusion matrix is harder to interpret. Indeed, contrary to
the supervised case, there is no direct link between the class IDs and the cluster IDs (meaning the
first class does not necessarily correspond to the first cluster), so there is no clear interpretable
diagonal by default. To improve the readability and interoperability of a clustering confusion
matrix, rows and columns must be reordered to display a diagonal and group the confusions
together.

This appendix details the method employed to reorder the rows and columns. We take the
example of the second figure of figure V.8 (CITRUN trained on Pile-NER and tested on Science).
The initial confusion matrix, without processing, is displayed in figure A.1a. It resembles a
starry sky more than a confusion matrix and is nearly impossible to interpret.

Diagonal Elicitation The first step is to find a diagonal in the confusion matrix. In a
supervised scenario, if the model performs correctly, most instances are in the diagonal as
the model correctly predicts them. By extension, we want to reorder the axes so that the
unsupervised confusion matrix shows a clear diagonal: we want to find the “main” cluster
corresponding to each class. For instance, in figure A.1a, most instances of organization are in
cluster 16, most chemicalcompound entities are in cluster 11, ...

This can be formulated as: “reorganizing the rows and columns so that the diagonal of
the matrix is of maximal sum”. This corresponds to an assignment problem (except that the
canonical problem involves minimizing the sum). We solve this assignment problem using a
modified version of the Jonker-Volgenant algorithm1 [317, 318].

The resulting confusion matrix is displayed in figure A.1b. It displays a clear diagonal that is
much more interpretable than the initial confusion matrix. Nevertheless, some important values
outside the diagonal are still scattered (e.g., person/cluster 14, astronomicalobject/cluster 22).

1We employ the SciPy implementation available at https://docs.scipy.org/doc/scipy/reference/generated/scipy.
optimize.linear_sum_assignment.html (visited on 2024-10-21).
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Figure A.1: Reordering of the unsupervised confusion matrix of CITRUN for NER trained on
Pile-NER and tested on Science.
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A Unsupervised Confusion Matrix

Confusion Grouping The second step aims to bring major confusions closer to make the
matrix readable. An ideal confusion matrix is a band matrix, that is, a sparse matrix where
the non-zero entries are confined to a diagonal band. We propose implementing the reverse
Cutthill–McKee algorithm2 [319, 320], which aims to permute a sparse matrix into a band
matrix with a small bandwidth. In practice, not all non-zero values are interesting (some
represent noise or very rare edge cases), so we propose fixing a threshold (1 % of the total
instances). Below this threshold, the value is not considered when reordering axes.

We obtain the final confusion matrix of figure A.1c. We can see that the major confusions are
now grouped closer (e.g., person and scientist, protein and enzyme, university and organization).

As a side note, the first diagonal elicitation step is optional, as the reverse Cuthill–McKee
algorithm produces a band matrix (that is, with a diagonal). We have found, in practice, that the
first diagonal elicitation step helped to produce a diagonal with the maximum sum, thus leading
to a clearer interpretation.

2Following the SciPy implementation available at https://docs.scipy.org/doc/scipy/reference/generated/scipy.
sparse.csgraph.reverse_cuthill_mckee.html (visited on 2024-10-21).
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